Math, asked by roshanzameerkhan, 2 days ago

tan²A+cot²A+2=sec²A cosec²A​

Answers

Answered by SugarCrash
3

\sf\large\underline{\underline{\red{\sf Question:}}}

  • To Prove : tan²A+cot²A+2=sec²A cosec²A

\sf\large\underline{\underline{\red{\sf Solution:}}}

We know that,

\sf \red\bigstar\sin^2 \theta +\cos^2\theta =1

\sf\red\bigstar\tan^2\theta= \sec^2\theta-1

\sf\red\bigstar\cot^2\theta=\csc^2\theta - 1

Using this formulas,

L.H.S

= tan²A+cot²A+2

= (sec²A - 1) + (cosec²A - 1) + 2

= sec²A -1 + cosec²A -1 + 2

= sec²A  + cosec²A  -2 + 2

= sec²A  + cosec²A  

=\sf \dfrac{1}{cos^2A}+\dfrac{1}{\sin^2A}

=\sf\dfrac{\sin^2A+\cos^2A}{\cos^2A\sin^2A}

=\sf\dfrac{\green{1}}{\cos^2A\sin^2A}

= sec²A cosec²A

= R.H.S

ㅤㅤㅤㅤ\large\green{\underbrace{\sf Hence\;proved...{\displaystyle !\,}}}

Points to know:

  • sin x = 1/ cosec x
  • cos x = 1 / sec x
  • tan x = sin x / cos x
  • cot x = cos x/ sin x
  • tan x = 1/ cot x
Similar questions