tan²A + cot²A = sec²A.cosec²A + k, find k.
Answers
Solution:- from LHS :- tan²A + cot²A
∵sin²A/cos²A = tan²A and cos²A/sin²A = cot²A
⟹ ∴ sin²A /cos²A + cos²A /sin²A
⟹ sin²A * sin²A + cos²A * cos²A / sin²A * cos²A
⟹ sin⁴A + cos⁴A / sin²A *cos²A
we know that , a²+b² (a+b)² - 2ab
similarly let sin²A = a and sin²B = b
⟹ [(sin²A)+ (cos²B)]² - 2sin²A *cos²A
⟹( sin²A + cos²A)² - 2sin²A cos²A / sin²A cos²A
⟹ ∵ sin²A + cos²A = 1
⟹ 1 - 2sin²A * cos²A / sin²A * cos²A
⟹ 1/sin²A * cos²A - 2sin²A *cos²A /sin²A * cos²A
⟹ cosec²A *sec²A - 2 ______LHS
∵ 1//sin²A = cosec²A and 1/cos²A = sec²A
Compare to given R.H.S
sec²A* cosec²A + k = cosec²A * sec²A -2
We get ,
- k = -2 Answer
________________________________
Step-by-step explanation:
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀