Math, asked by mirseetmumaryaShil, 1 year ago

Tan2A - Sin2A = tan2A * sin2A. Prove

Answers

Answered by hotelcalifornia
60

Answer:

Hence proved that \tan ^ { 2 } A - \sin ^ { 2 } A = \tan ^ { 2 } A \sin ^ { 2 } A

To prove:

\tan ^ { 2 } A - \sin ^ { 2 } A = \tan ^ { 2 } A \sin ^ { 2 } A

Solution:

Given,  

\tan ^ { 2 } A - \sin ^ { 2 } A \\

We know that the value of \tan \theta = \frac { \sin \theta } { \cos \theta }

\begin{array} { c } { \therefore \tan ^ { 2 } A - \sin ^ { 2 } A = \frac { \sin ^ { 2 } A } { \cos ^ { 2 } A } - \sin ^ { 2 } A } \\\\ { = \frac { \left( \sin ^ { 2 } A - \cos ^ { 2 } A \sin ^ { 2 } A \right) } { \cos ^ { 2 } A } } \end{array}

\begin{array} { l } { = \sin ^ { 2 } A \frac { 1 - \cos ^ { 2 } A } { \cos ^ { 2 } A } } \\\\ { = \frac { \sin ^ { 2 } A } { \cos ^ { 2 } A } \left( 1 - \cos ^ { 2 } A \right) } \\\\ { = \tan ^ { 2 } A \left( 1 - \cos ^ { 2 } A \right) } \end{array}

Since we know that the value of \left( 1 - \cos ^ { 2 } A \right) \text { is } \sin ^ { 2 } A

Substituting this in the above terms, we get the following,  

\tan ^ { 2 } A - \sin ^ { 2 } A = \tan ^ { 2 } A \sin ^ { 2 } A

Hence proved that the subtraction of \tan ^ { 2 } A \text { and } \sin ^ { 2 } A will lead to the product of \tan ^ { 2 } A \text { and } \sin ^ { 2 } A

Thus, \tan ^ { 2 } A - \sin ^ { 2 } A = \tan ^ { 2 } A \sin ^ { 2 } A

Hence proved.

Answered by mysticd
63

Answer:

 tan^{2}A-sin^{2}A\\=tan^{2}Asin^{2}A

Step-by-step explanation:

LHS = tan^{2}A-sin^{2}A\\=\frac{sin^{2}A}{cos^{2}A}-sin^{2}A\\=sin^{2}A\big(\frac{1}{cos^{2}A}-1\big)\\=sin^{2}A\big(\frac{1-cos^{2}A}{cos^{2}A}\big)\\=\\=\frac{sin^{2}A}{cos^{2}A}\big(1-cos^{2}A)\big)\\=\frac{sin^{2}A}{cos^{2}A}\times sin^{2}A

/* We know the Trigonometric identity:

1-cos²A=sin²A */

=tan^{2}Asin^{2}A

=RHS

•••♪

Similar questions