tan²A-tan²B=cos²B-cos²A/cos²B cos²A=sin²A-sin²B/cos²B cos²A,Prove it by using trigonometric identities.
Answers
Answered by
17
Given :
tan²A - tan²B = cos²B - cos²A/cos²B cos²A= sin²A- sin²B / cos²B cos²A
LHS = tan²A - tan²B
= sin²A/cos²A - sin²B/cos²B
[tanθ = sinθ /cosθ ]
= (sin²A cos²B - sin²B cos²A)/cos²A cos²B
=[ sin²A(1-sin²B) - sin²B(1-sin²A)]/cos²A cos²B
[cos²θ = 1 - sin²θ ]
=[ (sin²A - sin²Asin²B) - (sin²B - sin²Asin²B)]/cos²A cos²B
= [(sin²A - sin²Asin²B - sin²B + sin²Asin²B)]/cos²A cos²B
=[ (sin²A - sin²B - sin²Asin²B + sin²Asin²B)] /cos²A cos²B
LHS = (sin²A - sin²B)/cos²A cos²B = RHS
HOPE THIS ANSWER WILL HELP YOU..
Answered by
7
Hi ,
************************************
We know that ,
1 ) tanA = sinA/cosA
2 ) sin²A + cos²A = 1
**************************************
tan²A - tan²B
= ( sin²A/cos²A ) - ( sin²B/cos²B )
= [(sin²Acos²B - sin²Bcos²A)/cos²Acos²B ]
= [(1-cos²A)cos²B-(1-cos²B)cos²A]/cos²Acos²B
=[cos²B-cos²Acos²B-cos²A+cos²Acos²B]/cos²Acos²B
= (cos²B - cos²A)/cos²Acos²B --( 1 )
=[(1 - sin²B)-(1-sin²A)]/[cos²Bcos²A ]
= ( 1 - sin²B - 1 + sin²A )/(cos²Bcos²A )
= ( sin²A - sin²B )/cos²Bcos²A----( 2 )
I hope this helps you.
: )
************************************
We know that ,
1 ) tanA = sinA/cosA
2 ) sin²A + cos²A = 1
**************************************
tan²A - tan²B
= ( sin²A/cos²A ) - ( sin²B/cos²B )
= [(sin²Acos²B - sin²Bcos²A)/cos²Acos²B ]
= [(1-cos²A)cos²B-(1-cos²B)cos²A]/cos²Acos²B
=[cos²B-cos²Acos²B-cos²A+cos²Acos²B]/cos²Acos²B
= (cos²B - cos²A)/cos²Acos²B --( 1 )
=[(1 - sin²B)-(1-sin²A)]/[cos²Bcos²A ]
= ( 1 - sin²B - 1 + sin²A )/(cos²Bcos²A )
= ( sin²A - sin²B )/cos²Bcos²A----( 2 )
I hope this helps you.
: )
Similar questions