2(sin⁶θ + cos⁶θ)-3(sin⁴θ + cos⁴θ)+1=0,Prove it by using trigonometric identities.Prove it by using trigonometric identities.Prove it by using trigonometric identities.
Answers
Answered by
2
Solution of this question
Identity used
sin²A+cos²A=1
a³+b³=(a+b)(a²+b²-ab)
1 = sin²A + cos²A
(a+b)²= a²+b²+2ab
theta = A
=2[ (sin²A)³+(cos²A)³]-3sin⁴A-3cos⁴A +sin²A+cos²A
=2[(sin²A+cos²A)(sin⁴A+cos⁴A-sin²A.cos²A)]-3sin⁴A-3cos⁴A +sin²A+cos²A
=2[(1)(sin⁴A+cos⁴A-sin²A.cos²A)]-3sin⁴A-3cos⁴A +sin²A+cos²A
=2(sin⁴A+cos⁴A-sin²A.cos²A)]-3sin⁴A-3cos⁴A +sin²A+cos²A
=2sin⁴A+2sin⁴A-2sin²A.cos²A-3sin⁴A-3cos⁴A +sin²A+cos²A
=-sin⁴A-cos⁴A-2sin²Acos²A+1
=-(sin⁴A+cos⁴A+2sin²A.cos²A)+1
=-{(sin²A)²+(cos²A)²+2sin²A.cos²A}+1
=-{sin²A+Cos²A}²+1
=-1+1
=0
RHS
LHS=RHS
HP
Identity used
sin²A+cos²A=1
a³+b³=(a+b)(a²+b²-ab)
1 = sin²A + cos²A
(a+b)²= a²+b²+2ab
theta = A
=2[ (sin²A)³+(cos²A)³]-3sin⁴A-3cos⁴A +sin²A+cos²A
=2[(sin²A+cos²A)(sin⁴A+cos⁴A-sin²A.cos²A)]-3sin⁴A-3cos⁴A +sin²A+cos²A
=2[(1)(sin⁴A+cos⁴A-sin²A.cos²A)]-3sin⁴A-3cos⁴A +sin²A+cos²A
=2(sin⁴A+cos⁴A-sin²A.cos²A)]-3sin⁴A-3cos⁴A +sin²A+cos²A
=2sin⁴A+2sin⁴A-2sin²A.cos²A-3sin⁴A-3cos⁴A +sin²A+cos²A
=-sin⁴A-cos⁴A-2sin²Acos²A+1
=-(sin⁴A+cos⁴A+2sin²A.cos²A)+1
=-{(sin²A)²+(cos²A)²+2sin²A.cos²A}+1
=-{sin²A+Cos²A}²+1
=-1+1
=0
RHS
LHS=RHS
HP
Answered by
3
Here I am using A instead of theta.
**************************************
We know the algebraic identities:
1 ) a³ + b³ = ( a + b )³ - 3ab( a + b )
2 ) a² + b² = ( a + b )² - 2ab
and
Trigonometric identity :
1 ) sin² A + cos² A = 1
*****************************************
Now ,
i ) sin^6 A + cos^6A
= ( sin² A)³ + ( cos² A )³
=(sin²A+cos²A)³-3sin²Acos²A(sin²A+cos²A)
= 1 - 3sin²A cos²A --- ( 1 )
_____________________________
ii ) sin⁴A + cos⁴A
= ( sin² A )² + ( cos²A )²
= ( sin²A + cos²A )² - 2sin²Acos²A
= 1 - 2sin²Acos²A -----( ii )
__________________________
Now ,
LHS
= 2(sin^6A+cos^6A)-3(sin⁴A+cos⁴A)+1
{ From ( i ) & ( ii ) , we get }
=2(1 -3sin²Acos²A)-3(1 - 2sin²Acos²A)+1
= 2 -6sin²Acos²A-3+6sin²Acos²A + 1
= 2 - 3 + 1
= 3 - 3
= 0
= RHS
•••••
**************************************
We know the algebraic identities:
1 ) a³ + b³ = ( a + b )³ - 3ab( a + b )
2 ) a² + b² = ( a + b )² - 2ab
and
Trigonometric identity :
1 ) sin² A + cos² A = 1
*****************************************
Now ,
i ) sin^6 A + cos^6A
= ( sin² A)³ + ( cos² A )³
=(sin²A+cos²A)³-3sin²Acos²A(sin²A+cos²A)
= 1 - 3sin²A cos²A --- ( 1 )
_____________________________
ii ) sin⁴A + cos⁴A
= ( sin² A )² + ( cos²A )²
= ( sin²A + cos²A )² - 2sin²Acos²A
= 1 - 2sin²Acos²A -----( ii )
__________________________
Now ,
LHS
= 2(sin^6A+cos^6A)-3(sin⁴A+cos⁴A)+1
{ From ( i ) & ( ii ) , we get }
=2(1 -3sin²Acos²A)-3(1 - 2sin²Acos²A)+1
= 2 -6sin²Acos²A-3+6sin²Acos²A + 1
= 2 - 3 + 1
= 3 - 3
= 0
= RHS
•••••
Similar questions