If sinθ+cosθ=p and secθ+cosecθ=q, show that q(p²-1)=2p.Prove it by using trigonometric identities.
Answers
Answered by
37
GIVEN :
If sinθ+cosθ=p and secθ+cosecθ=q, show that q(p²-1)=2p
LHS = q(p²-1)
= (secθ+cosecθ)[(sinθ+cosθ)²-1]
=(1/cosθ+1/sin θ) (sin²θ+2 sinθ cosθ+cos²θ-1)
[cosecθ = 1/sinθ , secθ = 1/cosθ, (a+b)² = a² + b² + 2ab]
=(1/cosθ+1/sin θ) (sin²θ + cos²θ +2 sinθ cosθ-1)
={(sinθ+ cosθ)/sinθ cosθ}(1+ 2 sinθ cosθ -1)
[sin²θ+cos²θ=1]
={(sinθ+cosθ)/sinθ cosθ}(2 sinθ cosθ )
=2(sinθ+cosθ)
LHS =2(sinθ+cosθ) = 2p = RHS
HOPE THIS ANSWER WILL HELP YOU.
Answered by
12
Hi ,
Here I am using 'A ' instead of theta.
sinA + cosA = p ----( 1 )
do the square of equation ( 1 ) , we get
( sinA + cosA )² = p²
sin²A + cos²A + 2sinAcosA = p²
1 + 2sinAcosA = p² ---( 2 )
secA + cosecA = q
1/cosA + 1/sinA = q
( sinA + cosA )/sinAcosA = q
p/sinAcosA = q ----( 3 ) [ from ( 1 ) ]
Now ,
LHS = q ( p² - 1 )
= ( p/sinAcosA )[ 1 + 2sinAcosA - 1 ]
{ from ( 3 ) and ( 2 ) }
= ( p/sinAcosA ) × ( 2sinAcosA )
after cancellation, we get
= 2p
= RHS
I hope this helps you.
: )
Here I am using 'A ' instead of theta.
sinA + cosA = p ----( 1 )
do the square of equation ( 1 ) , we get
( sinA + cosA )² = p²
sin²A + cos²A + 2sinAcosA = p²
1 + 2sinAcosA = p² ---( 2 )
secA + cosecA = q
1/cosA + 1/sinA = q
( sinA + cosA )/sinAcosA = q
p/sinAcosA = q ----( 3 ) [ from ( 1 ) ]
Now ,
LHS = q ( p² - 1 )
= ( p/sinAcosA )[ 1 + 2sinAcosA - 1 ]
{ from ( 3 ) and ( 2 ) }
= ( p/sinAcosA ) × ( 2sinAcosA )
after cancellation, we get
= 2p
= RHS
I hope this helps you.
: )
Similar questions