Math, asked by TbiaSupreme, 1 year ago

acosθ +bsinθ =p and asinθ-bcosθ =q, then prove that a²+b²=p²+q².Prove it by using trigonometric identities.

Answers

Answered by megalasubramanian
1
hope it helps you
if useful plzzz mark as brainliest
Attachments:
Answered by mysticd
1
Here, I am using x instead of theta.

It is given that ,

acosx+bsinx = p ----( 1 )

=> (acosx+bsinx)² = p²

=> a²cos²x+b²sin²x+2absinxcosx=p²---(2)

asinx-bcosx=q----(3)

=> (asinx-bcosx)²=q²

=> a²sin²x+b²cos²x-2absinxcosx=q²---(4)

Add (2)&(4) , we get

a²cos²x+a²sin²x+b²sin²x+b²cos²x=p²+q²

=> a²(cos²x+sin²x)+b²(sin²x+cos²x)=p²+q²

=> a²+b²=p²+q²

[ cos²x+sin²x = 1 ]

•••••
Similar questions