tan²A - tan²B = (sin²A - sin²B)/(cos²A * cos²B) prove the question given above
Answers
Answer:
Step-by-step explanation:
tan²x = sin²x/cos²x, and sin²x + cos²x = 1
tan²A - tan²B = sin²A/cos²A - sin²B/cos²B
= sin²A cos²B/cos²A cos²B - sin²B cos²A/cos²A cos²B
= sin²A(1-sin²B)/cos²A cos²B - sin²B(1-sin²A)/cos²A cos²B
= (sin²A - sin²Asin²B)/cos²A cos²B - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B) - (sin²B - sin²Asin²B)/cos²A cos²B
= (sin²A - sin²Asin²B - sin²B + sin²Asin²B)/cos²A cos²B
= (sin²A - sin²B)/cos²A cos²B
Step-by-step explanation:
Given:-
Tan^2 A - Tan^2 B
To find:-
Prove that :Tan^2 A - Tan^2 B
= (Sin^2 A - Sin^2 B )/(Cos^2 A Cos^2 B)
Solution:-
LHS:-
Tan^2 A - Tan^2 B
We know that
Tan θ = Sin θ / Cos θ
=> (Sin A / Cos A)^2 - (Sin B/ Cos B)^2
=> Sin^2 A / Cos^2 A - Sin^2 B / Cos^2 B
=> (Sin^2 A Cos^2 B - Cos^2 A Sin^2 B ) /
Cos^2 A Cos^2 B
We know that
Sin^2 A + Cos^2 A = 1
=> Sin^2 A (1-Sin^2 B ) - Sin^2B(1-Sin^2 A) /
Cos^2 A Cos^2 B
=> (Sin^2 A - Sin^2 A Sin^2 B - Sin^2 B +Sin^2 A Sin^2B)/Cos^2 A Cos^2 B
=> (Sin^2 A - Sin^2 B )/(Cos^2 A Cos^2 B)
=> RHS
LHS=RHS
Hence, Proved
Answer:-
Tan^2 A - Tan^2 B
= (Sin^2 A - Sin^2 B )/(Cos^2 A Cos^2 B)
Used formulae:-
- Tan θ = Sin θ / Cos θ
- Sin^2 A + Cos^2 A = 1