Math, asked by tillquote3855, 9 months ago

Tan²theta + cot ²theta +2 = sec²theta.cosec²theta

Answers

Answered by sandy1816
1

Step-by-step explanation:

tan²+cot²+2

tan²+cot²+2tancot

(tan+cot)²

=(1/sincos)²

=(sec cosec)²

=sec².cosec²

Answered by Anonymous
3

Solution

 {tan}^{2} \:  \theta +  {cot}^{2}  \: \theta + 2 =  {sec}^{2} \theta \times  {cos}^{2}  \: \theta

LHS

 =  {tan}^{2} \:  \theta +  {cot}^{2}  \: \theta + 2 (1)

We know that

  • tan \: \theta \times cot \: \theta = 1

 =  {tan}^{2} \:  \theta +  {cot}^{2}  \: \theta + 2 \times tan \: \theta \:  \times  \: cot \: \theta

We know that

  • + + 2ab = (a + b)²

Like this ,

  = {(tan \: \theta + cot \: \theta)}^{2}

Now

  • tan \: \theta \:  =  \frac{sin \: \theta}{cos \: \theta}  \:

cot \: \theta =  \frac{cos \: \theta}{sin \: \theta}  \:

So,

  = {( \frac{sin \: \theta}{cos \: \theta \:  }  +  \frac{cos \: \theta}{sin \:\theta }) }^{2}

 =  {( \frac{ {sin}^{2}\theta +  {cos \: \theta}^{2}  }{sin \: \theta \times cos \: \theta}) }^{2}

We know that

  •  {sin}^{2} \theta +  {cos}^{2} \theta = 1

So,

 =  \frac{1}{ {sin}^{2}\theta \times  {cos}^{2} \theta }

We know that

  •  \frac{1}{sin \: \theta}  = cosec \: \theta \:
  •  \frac{1}{cos \: \theta}  = sec \: \theta \:

So,

 \boxed{\red{ = {cosec}^{2} \theta \times  {sec}^{2} \theta}} RHS

Hence Proved!!

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions