tan³θ-1/tanθ-1=sec²θ+tanθ Prove it?
Answers
Answered by
2
Steps:
1) We know ,
2) LHS=
Put
on the above cubic factorization .
Assuming
to avoid danger with Indeterminate forms;
Hence Proved:
for
Answered by
0
= (tan³θ - 1)/(tanθ - 1)
We know, a³ - b³ = (a - b)(a² + b² + ab)
So, tan³θ - 1 = (tanθ - 1)(tan²θ + 1 + tanθ)
we know, se²θ - tan²θ = 1 ∴ sec²θ = 1 + tan²θ
∴ [(tan²θ + 1 ) + tanθ] = [sec²θ + tanθ]
so, tan³θ - 1 = (tanθ - 1)(sec²θ + tanθ)
Now, (tan³θ - 1)/(tanθ - 1) = (tanθ - 1)(sec²θ + tanθ)/(tanθ - 1)
= (sec²θ + tanθ) = RHS
We know, a³ - b³ = (a - b)(a² + b² + ab)
So, tan³θ - 1 = (tanθ - 1)(tan²θ + 1 + tanθ)
we know, se²θ - tan²θ = 1 ∴ sec²θ = 1 + tan²θ
∴ [(tan²θ + 1 ) + tanθ] = [sec²θ + tanθ]
so, tan³θ - 1 = (tanθ - 1)(sec²θ + tanθ)
Now, (tan³θ - 1)/(tanθ - 1) = (tanθ - 1)(sec²θ + tanθ)/(tanθ - 1)
= (sec²θ + tanθ) = RHS
Similar questions