Math, asked by GodSD, 1 year ago

tan4 θ + tan2 θ = sec4 θ - sec2 θ ​

Answers

Answered by GodBrainly
22
 \blue{\huge\mathrm{ \underline{SOLUTION \colon}}}



L.H.S = tan4 θ + tan2 θ

= tan2 θ (tan2 θ + 1)

= (sec2 θ - 1) (tan2 θ + 1) [since, tan2 θ = sec2 θ – 1]

= (sec2 θ - 1) sec2 θ [since, tan2 θ + 1 = sec2 θ]

= sec4 θ - sec2 θ = R.H.S.

Hence Proved
Answered by Anonymous
2

Answer:

\mathfrak\red{Heya}

Step-by-step explanation:

Sec^{4}0-Sec^{2}  0=Tan^{4}0+Tan^{2}0

LHS,Sec^{4} 0-Sec^{2}0

Sec^{2} 0(Sec^{2} 0 -1)

(1+Tan^{2} 0)(1-Tan^{2} 0-1)

(1+Tan^{2} 0)(Tan^{2} 0)

Tan^{2} 0+Tan^{4} 0

Hence,Proved

Similar questions