Math, asked by shekharsouma494, 1 year ago

tan47+cot27/tan43+cot63=tan47cot27

Answers

Answered by ColinJacobus
13

Answer: Proved.


Step-by-step explanation:  We are given to prove the following equality

\dfrac{\tan 47^\circ+\cot 27^\circ}{\tan 43^\circ+\cot 63^\circ}=\tan 47^\circ\cot 27^\circ.

Let us start as follows -

L.H.S\\\\=\dfrac{\tan 47^\circ+\cot 27^\circ}{\tan 43^\circ+\cot 63^\circ}\\\\\\=\dfrac{\dfrac{\sin 47^\circ}{\cos 47^\circ}+\dfrac{\cos 27^\circ}{\sin 27^\circ}}{\dfrac{\sin 43^\circ}{\cos 43^\circ}+\dfrac{\cos 63^\circ}{\sin 63^\circ}}\\\\\\=\dfrac{\sin 47^\circ\sin 27^\circ+\cos 47^\circ\cos 27^\circ}{\cos 47^\circ\sin 27^\circ}\times\dfrac{\cos 43^\circ\sin 63^\circ}{\sin 43^\circ\sin 63^\circ+\cos 43^\circ\cos 63^\circ}\\\\\\=\dfrac{\cos(47^\circ-27^\circ)\cos 43^\circ\sin 63^\circ)}{\cos 47^\circ\sin 27^\circ\cos(63^\circ-43^\circ)}\\\\\\=\dfrac{\cos 43^\circ\sin 63^\circ}{\cos 47^\circ\sin 27^\circ}\\\\\\=\dfrac{\cos(90^\circ-47^\circ)\sin(90^\circ-27^\circ)}{\cos 47^\circ\sin 27^\circ}\\\\\\=\dfrac{\sin 47^\circ\cos 27^\circ}{\cos 47^\circ\sin 27^\circ}\\\\\\=\tan 47^\circ\cot 27^\circ\\\\=R.H.S.

Hence proved.


Answered by pinquancaro
6

Answer and explanation:

To prove : \dfrac{\tan 47^\circ+\cot 27^\circ}{\tan 43^\circ+\cot 63^\circ}=\tan 47^\circ\cot 27^\circ

Proof :

Taking LHS,

\dfrac{\tan 47^\circ+\cot 27^\circ}{\tan 43^\circ+\cot 63^\circ}

=\dfrac{\dfrac{\sin 47^\circ}{\cos 47^\circ}+\dfrac{\cos 27^\circ}{\sin 27^\circ}}{\dfrac{\sin 43^\circ}{\cos 43^\circ}+\dfrac{\cos 63^\circ}{\sin 63^\circ}}

=\dfrac{\sin 47^\circ\sin 27^\circ+\cos 47^\circ\cos 27^\circ}{\cos 47^\circ\sin 27^\circ}\times\dfrac{\cos 43^\circ\sin 63^\circ}{\sin 43^\circ\sin 63^\circ+\cos 43^\circ\cos 63^\circ}

=\dfrac{\cos(47^\circ-27^\circ)\cos 43^\circ\sin 63^\circ)}{\cos 47^\circ\sin 27^\circ\cos(63^\circ-43^\circ)}

=\dfrac{\cos 43^\circ\sin 63^\circ}{\cos 47^\circ\sin 27^\circ}

=\dfrac{\cos(90^\circ-47^\circ)\sin(90^\circ-27^\circ)}{\cos 47^\circ\sin 27^\circ}

=\dfrac{\sin 47^\circ\cos 27^\circ}{\cos 47^\circ\sin 27^\circ}

=\tan 47^\circ\cot 27^\circ

= RHS

Hence proved.

Similar questions