Math, asked by saloni6817, 1 year ago

tan5A- tan3A÷tan 5A+tan 3A = sin 2A÷sin 8A​

Answers

Answered by ratanshakya789
14

Answer:

Hey mate here is ur answer

Attachments:
Answered by hukam0685
13

Step-by-step explanation:

We know that

tan \: A =  \frac{sin \: A}{cos \: A} \\  \\  tan \: 5A =  \frac{sin \: 5A}{cos \: 5A} \\  \\

 \frac{tan \: 5A - tan \: 3A}{tan \: 5A  + tan \: 3A}  \\  \\  =  \frac{ \frac{sin \: 5A}{cos \: 5A}  - \frac{sin \: 3A}{cos \: 3A}}{\frac{sin \: 5A}{cos \: 5A}  + \frac{sin \: 3A}{cos \: 3A}} \\  \\ take \: LCM \\  \\  \frac{ \frac{sin \: 5A \: cos \: 3A - sin \: 3A \: cos \: 5A}{cos \: 3A \: cos \: 5A} }{\frac{sin \: 5A \: cos \: 3A  +  sin \: 3A \: cos \: 5A}{cos \: 3A \: cos \: 5A}} \\  \\  =  \frac{{sin \: 5A \: cos \: 3A - sin \: 3A \: cos \: 5A}  \: }{sin \: 5A \: cos \: 3A  + sin \: 3A \: cos \: 5A}  \\  \\

We know that

sin(A + B) = sin \: A \: cos \: B + cos \: A \: sin \: B \\  \\ sin(A - B) = sin \: A \: cos \: B - cos \: A \: sin \: B \\

apply these formulas

 =  \frac{sin(5A - 3A)}{sin \: (5A + 3A)}  \\  \\  =  \frac{sin \: 2A}{sin \: 8A}  \\  \\

Hence proved

Similar questions