tan6tan42tan66tan78=1
Answers
Answer:
tan 6 tan 42 tan 66 tan 78 = 1 [ Proved ]
Step-by-step explanation:
Given ;
tan 6 tan 42 tan 66 tan 78 = 1
L.H.S. = tan 6 tan 42 tan 66 tan 78
= tan 66 tan 6 tan 78 tan 42
Convert into sin / cos term
= sin 66 sin 6 sin 78 sin 42 / cos 66 cos 6 cos 78 cos 42
Multiply and divide by 2
= [ (2 sin 66 sin 6 ) ( 2 sin 78 sin 42 ) / ( 2 cos 66 cos 6 ) ( 2 cos 78 cos 42 ) ]
Using 2 sin A sin B = cos ( A - B ) - cos ( A + B )
And 2 cos A cos B = cos ( A - B ) + cos ( A + B )
= [ ( cos 60 - cos 72 ) ( cos 36 - cos 120 ) / ( cos 60 + cos 72 ) ( cos 36 + cos 120 ) ]
Using complimentary formula cos ( 90 - A ) = sin A , cos ( 90 + A ) = - sin A
= [ ( cos 60 - sin 18 ) ( cos 36 + sin 30 ) / ( cos 60 + sin 18 ) ( cos 36 - sin 30 ) ]
We have value of sin 18 = √ 5 - 1 / 4, sin 30 = 1 / 2 and cos 36 = √ 5 + 1 / 4
= [ ( 1 / 2 - √ 5 - 1 / 4 ) ( √ 5 + 1 / 4 + 1 / 2 ) / ( 1 / 2 + √ 5 - 1 / 4 ) ( √ 5 + 1 / 4 - 1 / 2 ) ]
Using ( a - b ) ( a + b ) = a² - b² in numerator
= ( 3 - √ 5 ) ( 3 + √ 5 ) / ( √ 5 - 1 ) ( √ 5 + 1 )
= 9 - 5 / 5 - 1
= 4 / 4
= 1
L.H.S. = R.H.S.
Hence proved .