Math, asked by atharva929281, 9 months ago

tan9°- tan27°- tan63°+tan81°=?​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
24

\huge\sf\pink{Answer}

☞ Your Answer is 4

\rule{110}1

\huge\sf\blue{Given}

\sf tan 9^{\circ} - tan 27^{\circ} - tan 63^{\circ} + tan 81^{\circ}

\rule{110}1

\huge\sf\gray{To \:Find}

◈ The final value?

\rule{110}1

\huge\sf\purple{Steps}

\sf tan 9^{\circ}+tan 81^{\circ} -tan 27^{\circ}-tan63^{\circ}

\sf tan ^{\circ}+cot 9^{\circ}-( tan 27^{\circ} + cot 27^{\circ}

\bigg\lgroup \sf tan A + cot A = 2 cosec 2A\bigg\rgroup

\sf 2 cosec 2(9^{\circ})-(2 cosec 2 (27^{\circ}))

\sf 2 cosec 18^{\circ} - 2 cosec 54{\circ}

\sf 2 \dfrac{1}{sin 18^{\circ}} - 2 \dfrac{1}{sin 54^{\circ}}

\sf 2 \times \dfrac{4}{\sqrt{5}-1} - 2\times \dfrac{4}{\sqrt{5}+1}

\sf 8\bigg\lgroup \dfrac{\sqrt{5}+1-(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}\bigg\rgroup

\sf 8\bigg\lgroup \dfrac{\sqrt{5}+1-\sqrt{5}+1}{5-1}\bigg\rgroup

\sf 8\bigg\lgroup \dfrac{2}{4}\bigg\rgroup

\sf \orange{tan 9^{\circ}+tan 81^{\circ} -tan 27^{\circ}-tan63^{\circ = 4}}

\rule{170}3

Answered by Anonymous
17

Answer:

\huge\underline\bold\red{answer!!}

<font color="blue"> your answer is 4

Step-by-step explanation:

subsititute tan81 = cot9 and tan63=cot27

By simplifying this you’ll get

tan^2(9) + 1/ tan9 - tan^2(27) +1/ tan27

tan^3(x)+1 = sec^2(x)

siimplify using this and you get

2/sin18 - 2/sin54

this gives you 2*( sin54 - sin18 / sin54sin18 )

= 2 * (2cos36sin18/sin54sin18) { using sinA - sinB = 2 cos(A+B/2)sin(A-B/2) }

= 4 ( cos36sin18/sin54sin18)

= 4

because cos36 = sin54 as 54 and 36 are complementary angles.

Similar questions