Math, asked by ananthasharmaguntupa, 1 year ago

TanA=1/√3,tanB=√3find the value of SinA.CosB+CosAsinB

Answers

Answered by lohithanaidu
6

Answer:


Step-by-step explanation:

Given tanA=1/√3⇒A=30°

          tanB=√3⇒B=60°

SinACosB+CosASinB=Sin(A+B)=Sin(30°+60°)=Sin90°=1

Answered by Anonymous
40

Answer:

1

Step-by-step explanation:

TanA = 1/√3

A = 30°

tanB = √3

B = 60°


By Using Identity

Sin(A+B) = SinA.CosB + CosA.SinB

SinA.CosB + CosA.SinB = Sin(30 + 60)

SinA.CosB + CosA.SinB = Sin90°

SinA.CosB + CosA.SinB = 1


rashiverma32: hi
rashiverma32: hru
Similar questions