TanA=1/√3,tanB=√3find the value of SinA.CosB+CosAsinB
Answers
Answered by
6
Answer:
Step-by-step explanation:
Given tanA=1/√3⇒A=30°
tanB=√3⇒B=60°
SinACosB+CosASinB=Sin(A+B)=Sin(30°+60°)=Sin90°=1
Answered by
40
Answer:
1
Step-by-step explanation:
TanA = 1/√3
A = 30°
tanB = √3
B = 60°
By Using Identity
Sin(A+B) = SinA.CosB + CosA.SinB
SinA.CosB + CosA.SinB = Sin(30 + 60)
SinA.CosB + CosA.SinB = Sin90°
SinA.CosB + CosA.SinB = 1
rashiverma32:
hi
Similar questions