Math, asked by pankajyadav19pp2uzrs, 1 year ago

tanA/1-cotA=cotA/1-tanA=1+secA.cosecA

Answers

Answered by pavanmeena16200366
15

Answer:


Step-by-step explanation:


Attachments:
Answered by mysticd
6

Answer:

\frac{tanA}{1-cotA}+\frac{cotA}{1-tanA}=cosecAsecA+1

Step-by-step explanation:

LHS =\frac{tanA}{1-cotA}+\frac{cotA}{1-tanA}=\frac{\frac{1}{cotA}}{1-cotA}+\frac{cotA}{1-\frac{1}{cotA}}

=\frac{1}{cotA(1-cotA)}-\frac{cot^{2}A}{1-cotA}

=\frac{1-cot^{3}A}{cotA(1-cotA)}

=\frac{1^{3}-cot^{3}A}{cotA(1-cotA)}

=\frac{(1-cotA)(1^{2}+1\times cotA+cot^{2}A)}{cotA(1-cotA)}

=\frac{(1+cot^{2}A)+cotA}{cotA}

=\frac{cosec^{2}A+cotA}{cotA}

=\frac{cosec^{2}A}{cotA}+\frac{cotA}{cotA}

=\frac{\frac{1}{sin^{2}A}}{\frac{cosA}{sinA}}+1\\=\frac{1}{sinAcosA}+1\\=cosecAsecA+1\\=RHS

Therefore,.

\frac{tanA}{1-cotA}+\frac{cotA}{1-tanA}=cosecAsecA+1

•••♪

Similar questions