tanA/(1+tan² A)²+cotA/(1+cot² A)²= sin A cos A ,Prove it
Answers
Answered by
20
Important formulas:
(1) Sin^2 A + cos^2 A = 1
(2) cot A = cos A/sin A
(3) 1/sin^2 A = cosec^2 A
(4) 1/Cos^2A = sec^2 A
(5) 1 + cot^2 A = cosec^2 A
(6) 1 + tan^2 A = sec^2 A
The answer is explained in the attachment.
Hope it helps!
(1) Sin^2 A + cos^2 A = 1
(2) cot A = cos A/sin A
(3) 1/sin^2 A = cosec^2 A
(4) 1/Cos^2A = sec^2 A
(5) 1 + cot^2 A = cosec^2 A
(6) 1 + tan^2 A = sec^2 A
The answer is explained in the attachment.
Hope it helps!
Attachments:
Answered by
10
= tanA/(1 + tan²A)² + cotA/(1 + cot²A)²
we know, sec²Ф - tan²Ф = 1 ⇒ 1 + tan²Ф = sec²Ф
Similarly, cosec²Ф - cot²Ф = 1 ⇒ 1 + cot²Ф = cosec²Ф
∴ (1 + tan²A) = sec²A and (1 + cot²A) = cosec²A
= tanA/(sec²A)² + cotA/(cosec²A)²
= tanA/sec⁴A + cotA/cosec⁴A
= tanA.cos⁴A + cotA.sin⁴A
= sinA/cosA.cos⁴A + cosA/sinA.sin⁴A
= sinA.cos³A + cosA.sin³A
= sinA.cosA(cos²A + cos²A)
We know, sin²Ф + cos²Ф = 1 so, cos²A + sin²A = 1
= sinA.cosA(cos²A + sin²A) = sinA.cosA.1 = sinA.cosA =
we know, sec²Ф - tan²Ф = 1 ⇒ 1 + tan²Ф = sec²Ф
Similarly, cosec²Ф - cot²Ф = 1 ⇒ 1 + cot²Ф = cosec²Ф
∴ (1 + tan²A) = sec²A and (1 + cot²A) = cosec²A
= tanA/(sec²A)² + cotA/(cosec²A)²
= tanA/sec⁴A + cotA/cosec⁴A
= tanA.cos⁴A + cotA.sin⁴A
= sinA/cosA.cos⁴A + cosA/sinA.sin⁴A
= sinA.cos³A + cosA.sin³A
= sinA.cosA(cos²A + cos²A)
We know, sin²Ф + cos²Ф = 1 so, cos²A + sin²A = 1
= sinA.cosA(cos²A + sin²A) = sinA.cosA.1 = sinA.cosA =
Similar questions