TanA-CotA/SinA.cosA=Sec^2A-Cosec^2A=Tan^2A-Cot^2A
Answers
Answered by
11
Hi ,
( tanA - cotA )/( sinAcosA )
= [(sinA/cosA)-(cosA/sinA)]/(sinAcosA)
= ( sin²A - cos² A )/ sin²Acos²A
= ( sin² A/sin²Acos²A)-(cos²A/sin²Acos²A )
= ( 1/cos² A ) - ( 1/sin² A )
= sec² A - cosec² A ----( 1 )
= ( 1 + tan² A ) - ( 1 + cot² A )
= 1 + tan² A - 1 - cot² A
= tan² A - cot² A
Hence proved.
: )
( tanA - cotA )/( sinAcosA )
= [(sinA/cosA)-(cosA/sinA)]/(sinAcosA)
= ( sin²A - cos² A )/ sin²Acos²A
= ( sin² A/sin²Acos²A)-(cos²A/sin²Acos²A )
= ( 1/cos² A ) - ( 1/sin² A )
= sec² A - cosec² A ----( 1 )
= ( 1 + tan² A ) - ( 1 + cot² A )
= 1 + tan² A - 1 - cot² A
= tan² A - cot² A
Hence proved.
: )
Answered by
13
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions