Math, asked by lucky200510, 11 months ago

tanA/I+secA- tanA/1-secA= 2 cosec A

Answers

Answered by salman002047138
1

Step-by-step explanation:

I hope you understand....

Attachments:
Answered by rakhithakur
3

Answer:

as you know

1 +  { \tan(a) }^{2}  =  { \sec(a) }^{2}  \\  =  { \tan(a) }^{2}  =  { \sec(a) }^{2}  - 1 \\  -  { \tan(a) }^{2}  = 1 -  { \sec(a) }^{2}

Step-by-step explanation:

 \frac{tana}{1 + seca}  -  \frac{ \tan(a) }{1 -  \sec(a) }  \\  =  \frac{ \tan(a)(1 -  \sec(a)  )  -  \tan(a) (1 +  \sec(a) )}{(1 +  \sec(a)  )(1 -  \sec(a) }  \\  =  \frac{ \tan(a)  -  \tan(a)  \sec(a) -  \tan(a)   -  \tan(a) \sec(a)  }{1 -  { \sec(a) }^{2} }  \\  =  \frac{ - 2 \tan(a) \sec(a)  }{ -  { \tan(a) }^{2} }  \\  =  \frac{2 \sec(a) }{ \tan(a) }  \\  =  \frac{ 2\frac{1}{ \cos(a) } }{ \frac{ \sin(a) }{ \cos(a) } }  \\  = 2 \frac{1}{ \sin(a) }  \\  = 2 \csc(a)

Similar questions