Math, asked by seana, 9 months ago

tanA/secA-1=secA+1/tanA​

Answers

Answered by tejasbenibagde76
0

To prove,

 \frac{</u></strong><strong><u>tanA</u></strong><strong><u>}{</u></strong><strong><u>secA</u></strong><strong><u> - 1}  =  \frac{</u></strong><strong><u>secA</u></strong><strong><u> - 1}{</u></strong><strong><u>tanA</u></strong><strong><u>}

Proof,

</u></strong><strong><u>LHS</u></strong><strong><u> =  \frac{</u></strong><strong><u>tanA</u></strong><strong><u>}{</u></strong><strong><u>secA</u></strong><strong><u> - 1}  \\  =  \frac{</u></strong><strong><u>tanA</u></strong><strong><u>}{</u></strong><strong><u>secA</u></strong><strong><u> - 1}  \times  \frac{</u></strong><strong><u>secA</u></strong><strong><u> + 1}{</u></strong><strong><u>secA</u></strong><strong><u> + 1}  \\  =  \frac{</u></strong><strong><u>tanA</u></strong><strong><u>(</u></strong><strong><u>secA</u></strong><strong><u>  + 1)}{ {sec}^{2}</u></strong><strong><u>A</u></strong><strong><u> - 1 }   \\  =  \frac{</u></strong><strong><u>tanA</u></strong><strong><u>(</u></strong><strong><u>secA</u></strong><strong><u> + 1)}{ {tan}^{2} </u></strong><strong><u>A</u></strong><strong><u>}  \\  = \frac{</u></strong><strong><u>secA</u></strong><strong><u> + 1}{</u></strong><strong><u>tanA</u></strong><strong><u>}  \\  = </u></strong><strong><u>RHS</u></strong><strong><u>

Hence proved☺️

(Note that,

  • 1+tan²A=sec²A
  • sin²A+cos²A=1
  • 1+cot²A=cosec²A)
Answered by priya8514
3

Answer:

hope this answer will be helpful

plz follow me

Attachments:
Similar questions