tana_seca+1/tana+seca-1
Answers
Answered by
6
Answer:
Step-by-step explanation:
Given,
\frac{tanA+secA-1}{tanA-secA+1}
Now we know,
sec²A - tan²A = 1
Substituting this identity,
= \frac{tanA+secA-(sec^{2}A-tan^{2}A)}{tanA+1-secA}
= \frac{tanA+secA-((secA+tanA)(secA-tanA))}{tanA+1-secA}
= \frac{(tanA+secA)(1-(secA-tanA)}{tanA+1-secA}
= \frac{(tanA+secA)(1-secA+tanA)}{tanA+1-secA}
= secA+tanA
Hence proved
hope it helps you..
mark it as brainliest...
Similar questions