tanA + secA =4, then what is the value of sinA
Answers
Answered by
6
I hope this answer will help you. Please mark me Birlianist.
Attachments:
Answered by
6
Answer
15/17
Explanation
tanA + secA = 4
We can write it as,
sinA/cosA + 1/cosA = 4
→ (sinA + 1)/cosA = 4
→ sinA + 1 = 4cosA
Now squaring both sides,
(sinA + 1)² = (16cosA)²
→ sin²A + 1 + 2sinA = 16cos²A
Replace cos²A as 1 - sin²A (since, cos²A + sin²A = 1)
→ sin²A + 1 + 2sinA = 16(1 - sin²A)
→ sin²A + 1 + 2sinA = 16 - 16sin²A
→ sin²A + 16sin²A + 1 - 16 + 2sinA = 0
→ 17sin²A + 2sinA - 15 = 0
Now, splitting the middle term
→ 17sin²A + 17sinA - 15sinA - 15 = 0
→ 17sinA(sinA + 1) - 15(sinA + 1) = 0
→ (17sinA - 15)(sinA + 1) = 0
→ 17sinA - 15 = 0 or sinA + 1 = 0
→ sinA = 15/17 or sinA = -1
But, for sinA = -1, tanA becomes undefined. Hence, we will neglect this value.
Similar questions