tanA+tanB/cotA+cotB=tanAtanB prove
Answers
Answered by
374
(tan A+tan B) / (cot A+cot B)
⇒(tan A+tan B) / (1/tan A+1/tan B)
⇒(tan A +tan B) / (tan A+tan B / tan A·tan B)
⇒(tan A+tan B) / (tan A·tan B / tan A+tan B)
⇒tan A ·tan B
hence proved
⇒(tan A+tan B) / (1/tan A+1/tan B)
⇒(tan A +tan B) / (tan A+tan B / tan A·tan B)
⇒(tan A+tan B) / (tan A·tan B / tan A+tan B)
⇒tan A ·tan B
hence proved
Answered by
138
To prove:
Let’s consider the LHS,
LHS
= RHS
Hence proved.
To prove LHS = RHS, we used some trigonometric equations. Since cot is the inverse of tan. We substituted it in the equations and easily proves that left hand side is equal to right hand side.
Similar questions
Social Sciences,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago