Math, asked by rimummarikab4e0sta, 1 year ago

tanA+tanB/cotA+cotB=tanAtanB prove

Answers

Answered by mini24
374
(tan A+tan B) / (cot A+cot B)
⇒(tan A+tan B) / (1/tan A+1/tan B)
⇒(tan A +tan B) / (tan A+tan B / tan A·tan B)
⇒(tan A+tan B) / (tan A·tan B / tan A+tan B)
⇒tan A ·tan B
hence proved
Answered by mindfulmaisel
138

To prove:

\frac{\tan A+\tan B}{\cot A+\cot B}=\tan A \tan B

Let’s consider the LHS,

LHS =\frac{\tan A+\tan B}{\cot A+\cot B}

\Rightarrow \frac{\tan A+\tan B}{\frac{1}{\tan A}+\frac{1}{\tan B}}               \left[{since}, \cot \theta=\frac{1}{\tan \theta}\right]

\Rightarrow \frac{\tan A+\tan B}{\frac{\tan A+\tan B}{\tan A \tan B}}

\Rightarrow \tan A \tan B

= RHS

Hence proved.

To prove LHS = RHS, we used some trigonometric equations. Since cot is the inverse of tan. We substituted it in the equations and easily proves that left hand side is equal to right hand side.

Similar questions