Math, asked by Anonymous, 1 year ago

tano/1-coto+coto/1-tano =1+tano+coto

Answers

Answered by ashishks1912
31

GIVEN :

The equation is \frac{tano}{1-coto}+\frac{coto}{1-tano}= 1+tano+coto

TO FIND :

The equality \frac{tano}{1-coto}+\frac{coto}{1-tano}= 1+tano+coto is true and verify.

SOLUTION :

Given equation is \frac{tano}{1-coto}+\frac{coto}{1-tano}= 1+tano+coto

we know that the formulae are given by :

tanx=\frac{sinx}{cosx} and cotx=\frac{cosx}{sinx}

Now by substituting in the LHS :

 \frac{tano}{1-coto}+\frac{coto}{1-tano}

=\frac{\frac{sino}{coso}}{1-\frac{coso}{sino}} + \frac{\frac{coso}{sino}}{1-\frac{sino}{coso}}

=\frac{\frac{sino}{coso}}{\frac{sino-coso}{sino}}+ \frac{\frac{coso}{sino}}{\frac{coso-sino}{coso}}

[tex]=\frac{sin^2o}{coso(sino-coso)} + \frac{cos^2o}{sino(coso-sino)} [/tex]

[tex]=\frac{sin^2o}{coso(sino-coso)} - \frac{cos^2o}{sino(sino-coso)} [/tex]

=\frac{sino}{coso}\times \frac{sino}{sino-coso} - \frac{coso}{sino}\times \frac{coso}{sino-coso}

=tano\times sino(\frac{1}{sino-coso}) - coto\times coso(\frac{1}{sino-coso})

=\frac{1}{sino-coso} [tano sino -coto coso]

=\frac{1}{sino-coso}[\frac{sin^3o-cos^3o}{(sino coso)}]

By using the algebraic identity :

a^3-b^3=(a-b)(a^2+ab+b^2)

=\frac{1}{sino-coso}\times \frac{(sino-coso)(sin^2o+sino coso +cos^2o)}{(sino coso)}

= \frac{(sin^2o+sino coso+cos^2o)}{sino coso}

= \frac{sino}{coso} + 1 + \frac{coso}{sino}

 = tano + 1 +coto

=1+tano+coto

= RHS

LHS = RHS

\frac{tano}{1-coto}+\frac{coto}{1-tano}= 1+tano+coto is true and verified.

Similar questions