Tantheta + sintheta =a and tantheta -sintheta =b then prove it a2 - b2 = root 4ab
Anonymous:
I think it is √16ab.
Answers
Answered by
0
a=(tanΘ+sinΘ)
a^2=(tanΘ+sinΘ)^2
=tan^2Θ+sin^2Θ+2tanΘsinΘ
b=(tanΘ-sinΘ)
b^2=(tanΘ-sinΘ)^2
=tan^2Θ+sin^2Θ-2tanΘsinΘ
To prove a^2-b^2=√16ab
LHS
a^2-b^2
(tan^2Θ+sin^2Θ+2tanΘsinΘ)-(tan^2Θ+sin^2Θ-2tanΘsinΘ)
tan^2Θ+sin^2Θ+2tanΘsinΘ-tan^2Θ-sin^2Θ+2tanΘsinΘ
4tanΘsinΘ
RHS
√16ab
√16(tanΘ+sinΘ)(tanΘ-sinΘ)
√16(tan^2Θ-sin^2Θ)
√16[(sin^2Θ/cos^2)-sin^2Θ]
√16[sin^2Θ(1-cos^2Θ)]/cos^2Θ {sin^2Θ+cos^2Θ=1}
√16[sin^2Θ·(sin^2Θ/cos^2Θ)]
√16tan^2Θsin^2Θ
4tanΘsinΘ
a^2=(tanΘ+sinΘ)^2
=tan^2Θ+sin^2Θ+2tanΘsinΘ
b=(tanΘ-sinΘ)
b^2=(tanΘ-sinΘ)^2
=tan^2Θ+sin^2Θ-2tanΘsinΘ
To prove a^2-b^2=√16ab
LHS
a^2-b^2
(tan^2Θ+sin^2Θ+2tanΘsinΘ)-(tan^2Θ+sin^2Θ-2tanΘsinΘ)
tan^2Θ+sin^2Θ+2tanΘsinΘ-tan^2Θ-sin^2Θ+2tanΘsinΘ
4tanΘsinΘ
RHS
√16ab
√16(tanΘ+sinΘ)(tanΘ-sinΘ)
√16(tan^2Θ-sin^2Θ)
√16[(sin^2Θ/cos^2)-sin^2Θ]
√16[sin^2Θ(1-cos^2Θ)]/cos^2Θ {sin^2Θ+cos^2Θ=1}
√16[sin^2Θ·(sin^2Θ/cos^2Θ)]
√16tan^2Θsin^2Θ
4tanΘsinΘ
Similar questions
Math,
8 months ago
Political Science,
8 months ago
English,
1 year ago
Hindi,
1 year ago
Biology,
1 year ago