Math, asked by PerinKrishna4090, 11 months ago

[tanx+1/cosx]2 +[tanx-1/cosx]2=2[1+sin2x/1-sin2x]

Answers

Answered by mysticd
0

Answer:

 \left(tanx +\frac{1}{cosx}\right)^{2}+\left(tanx -\frac{1}{cosx}\right)^{2}\\=2\left(\frac{1+sin^{2}x}{1-sin^{2}x}\right)

Step-by-step explanation:

LHS = \left(tanx +\frac{1}{cosx}\right)^{2}+\left(tanx -\frac{1}{cosx}\right)^{2}

= (tanx+secx)^{2}+(tanx-secx)^{2}

=2(tan^{2}x+sec^{2}x)

=2\left(\frac{sin^{2}x}{cos^{2}x}+\frac{1}{cos^{2}x}\right)

=2\left(\frac{sin^{2}x+1}{cos^{2}x}\right)

=2\left(\frac{1+sin^{2}x}{1-sin^{2}x}\right)

=RHS

Therefore,

 \left(tanx +\frac{1}{cosx}\right)^{2}+\left(tanx -\frac{1}{cosx}\right)^{2}\\=2\left(\frac{1+sin^{2}x}{1-sin^{2}x}\right)

•••♪

Similar questions