Math, asked by anshulverma27, 10 months ago

tanx + 1/ tanx =2 ,then the value of tan^2 x+ 1/tan^2 x is equal to​

Answers

Answered by Sharad001
66

Question :-

if \: \:   tan \: x +  \frac{1}{tan \: x}  = 2  \:  \:  \: then \: find \: the  \\ value \: of \:   \red{{tan}^{2} x +  \frac{1}{ {tan}^{2} x} }

Answer :-

 \implies \: \boxed{ {tan}^{2} x \:   +  \frac{1}{ {tan}^{2} x} \:  = 2} \:

Formula used :-

 \implies \boxed{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

Step - by - step explanation :-

Given that,

 \implies \: tan \: x \:  +  \frac{1}{tan \: x} \:  = 2 \\

Squaring on both sides,

 { \bigg(tan \: x \:  +  \frac{1}{tan \: x}  \bigg)}^{2}  =  {2}^{2}  \\  \\ \:  \text{applied \: the \: given \: formula } \\  \\  \rightarrow \:  \small {tan}^{2} x \:   +  \frac{1}{ {tan}^{2} x}  + 2 \: tan \: x \:  \frac{1}{tan \: x}  = 4 \\  \\  \rightarrow \: {tan}^{2} x \:   +  \frac{1}{ {tan}^{2} x} \:  + 2 = 4 \\  \\  \rightarrow \: {tan}^{2} x \:   +  \frac{1}{ {tan}^{2} x} \:  =  4 - 2 \\  \\  \rightarrow \:  \red{\boxed{ {tan}^{2} x \:   +  \frac{1}{ {tan}^{2} x} \:  = 2}}

This is the required solution.

______________________________

Similar questions