Math, asked by plvishakha31, 4 months ago

tanx + cotx = 2cosec 2x​

Answers

Answered by gsingh5be19
1

Answer:

taking L.H.S

tanx+cotx

we know tanx=sinx/cosx

and cotx=cosx/sinx

now tanx+cotx

=sinx/cosx+cosx/sinx

then taking L.C.M

=sin^2 x +cos^2 x/sinxcosx

we know Sin^2x+Cos^2x=1

=1/sinxcosx

multiply and divide by 2

=2/2sinxcosx

=2/sin2x

=2cosec2x

Hence proved

formulas used in this question are sin2x=2sinxcosx

cosec2x=1/sin2x

Answered by zeesoftzs
1

Answer:

 \tan(x)  +  \cot(x)  =  \frac{ \sin(x) }{ \cos(x) }  +  \frac{ \cos(x) }{ \sin(x) }  \\  =  \frac{sin^{2} x +  {cos}^{2}x }{sinx \:. cosx}  \\  =  \frac{1}{sinx \:. cosx}  \\  =  \frac{2}{2sinx \:. cosx}   \\  =  \frac{2}{sin2x}  \\  = 2 \csc(2x)  \\ hence \: proved

Similar questions