∫√tanxsinxcosxdx=(a)2√tanx(b)2√cotx(c)√cotx(d)√tanx
Answers
Answered by
0
Answer:
a) 2√Tanx.
Step-by-step explanation:
∫[√tanx /sinxcosx] dx
We know that Tanx = Sinx/Cosx => Sinx = Tanx/Secx.
= ∫[√Tanx / Tanx/Secx * 1/Secx] dx
= ∫ [Sec²x/√Tanx]dx
Let Tanx = u => du = Sec²xdx.
= ∫ du/√u
= 2√u
= 2√Tanx.
Similar questions
Social Sciences,
5 months ago
Social Sciences,
5 months ago
English,
5 months ago
Biology,
10 months ago
Biology,
10 months ago
Math,
1 year ago