Math, asked by parmjitpammy1261, 10 months ago

tell fast its emergency ​

Attachments:

Answers

Answered by MOSFET01
8

Solution

Please find the answer in attachment

 x\: = \: \dfrac{\sqrt{a+1}\: +\: \sqrt{a-1}}{\sqrt{a+1}\: - \: \sqrt{a-1}}

 x\: = \: \dfrac{\sqrt{a+1}\: +\: \sqrt{a-1}}{\sqrt{a+1}\: - \: \sqrt{a-1}}\times\dfrac{\sqrt{a+1}\: +\: \sqrt{a-1}}{\sqrt{a+1}\: +\: \sqrt{a-1}}

 x\: = \: \dfrac{(\sqrt{a+1}\: +\: \sqrt{a-1})^{2}}{(\sqrt{a+1})^{2}\: - \: (\sqrt{a-1})^{2}}

 x\:=\: \dfrac{(\sqrt{a+1})^{2}\:+\:(\sqrt{a-1})^{2}\:+\: 2\sqrt{a^{2}\:-\:1^{2}}}{(a\:+\:1)\:-\:(a\:-\:1)}

 x\:=\: \dfrac{a\:+\:1\:+\:a\:-\:1\:+\: 2\sqrt{a^{2}\:-\:1^{2}}}{(a\:+\:1\:-\:a\:+\:1)}

 x\: =\: \dfrac{2a\: + \: 2\sqrt{a^2-1}}{2}

x\:=\: a\: +\: \sqrt{a^2-1}

(x\:-\:a)^2\:=\:a^2\: - \:1

 x^{2}\:+\:a^2\: - \:2ax\: =\: a^2\: - \: 1

 \boxed{x^{2}\:-\:2ax\:+\:1\:=\:0}

HENCE PROVED

Attachments:

EliteSoul: Nice handwriting ♥ + Great answer! :)
MOSFET01: thank you
Anonymous: Awesome !
MOSFET01: thank you
Answered by Anonymous
13

Solution:

 \sf x =  \dfrac{ \sqrt{a + 1}  +  \sqrt{a - 1} }{ \sqrt{a + 1}  -  \sqrt{a - 1} }

Using componendo Dividendo theorem i.e If a/b = c/d then (a + b)/(a - b) = (c + d)/(c - d)

 \sf  \Rightarrow  \dfrac{x + 1}{x - 1} =  \dfrac{ \sqrt{a + 1}  +  \sqrt{a - 1}    +  \sqrt{a + 1}   -  \sqrt{a  - 1} }{ \sqrt{a + 1}   +  \sqrt{a - 1}  - (\sqrt{a + 1}  -  \sqrt{a - 1} )}

 \sf  \Rightarrow  \dfrac{x + 1}{x - 1} =  \dfrac{ 2 \sqrt{a  +  1} }{  2\sqrt{a - 1} }

 \sf  \Rightarrow  \dfrac{x + 1}{x - 1} =  \dfrac{ \sqrt{a  +  1} }{  \sqrt{a - 1} }

Squaring on both sides

 \sf  \Rightarrow  \dfrac{(x + 1) ^{2} }{(x - 1)^{2} } =  \dfrac{( \sqrt{a  +  1})^{2}  }{(  \sqrt{a - 1}) ^{2}  }

 \sf  \Rightarrow  \dfrac{ {x}^{2} + 2x + 1 }{ {x}^{2} - 2x + 1  } =  \dfrac{a  +  1 }{a - 1  }

Again using Componedo Dividendo theorem

 \sf  \Rightarrow  \dfrac{ {x}^{2} + 2x + 1  +  {x}^{2} - 2x  + 1}{  {x}^{2} + 2x + 1 - ( {x}^{2} - 2x + 1  )} =  \dfrac{a  +  1 + a - 1 }{a + 1 - (a - 1 ) }

 \sf  \Rightarrow  \dfrac{2 {x}^{2}   + 2}{   4x } =  \dfrac{2a }{2 }

 \sf  \Rightarrow  \dfrac{{x}^{2}   + 1}{   2x } =  a

 \sf  \Rightarrow {x}^{2}   + 1=  2ax

 \sf  \Rightarrow {x}^{2}    - 2ax+ 1= 0

Hence shown.


EliteSoul: Nice!
Anonymous: Thanks :)
MOSFET01: Nicely explained :) valuable solution
Anonymous: Thanks :)
Similar questions