Math, asked by sijn, 6 months ago

Tell me all useful algebraic identities..

Answers

Answered by ashauthiras
9

Answer:

Some Standard Algebraic Identities list are given below:

Identity I: (a + b)2 = a2 + 2ab + b2

Identity II: (a – b)2 = a2 – 2ab + b2

Identity III: a2 – b2= (a + b)(a – b)

Identity IV: (x + a)(x + b) = x2 + (a + b) x + ab

Identity V: (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

Identity VI: (a + b)3 = a3 + b3 + 3ab (a + b)

Identity VII: (a – b)3 = a3 – b3 – 3ab (a – b)

Identity VIII: a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)

Step-by-step explanation:

Answered by Anonymous
12

 \boxed{ \boxed{ \overline{ \underline{ \bf \red{USEFUL \: ALGEBRAIC \: IDENTITIES ☻}}}}}

 \rm \: The \: algebraic \: identities \: given \: below \: will \: help \: you \: in \:

 \rm \: factorising \: the \: polynomials :  -

 \rm \: i) \: (a ± b) {}^{2}  = a {}^{2}  + b {}^{2}± 2ab

 \rm \: ii) \: (a + b) {}^{2}  - (a - b) {}^{2}  = 4ab

 \rm \: iii) \: (a {}^{2}  - b {}^{2} ) = (a + b)(a - b)

 \rm \: iv) \: (a {}^{3}  ± b {}^{3} ) = (a±b)(a {}^{2}  + b {}^{2}  ± ab)

 \rm \: v) \: (a + b + c) {}^{2}  = a {}^{2}  + b {}^{2}  + c {}^{2}  + 2(ab + bc + ac)

 \rm \: vi) \: (a + b) {}^{3}  = a {}^{3}  + b {}^{3}  + 3ab(a + b) \: or \: a {}^{3}  + b {}^{3}  + 3a {}^{2} b + 3ab {}^{2}

 \rm \: vii) \: (a - b) {}^{3}  = a {}^{3}  - b {}^{3}  - 3ab(a - b) \: or \: a {}^{3}  - b {}^{3}  - 3a {}^{2} b + 3ab {}^{2}

 \rm \: viii) \: a {}^{3}  + b {}^{3} + c {}^{3}   - 3abc = (a + b + c)(a {}^{2}  + b {}^{2}  + c {}^{2}  - ab - bc - ca)

Similar questions