tell me correct answer..
Answers
Given:-
A quadratic polynomial is given to us.
The polynomial is ax² +bx + c .
Ratio of its zeroes is m:n .
To Find:-
The option b/w these
b²mn = ( m² + n² ) ac.
( m + n )²ac = b²mn.
b²( m² + n² ) = mnac.
None of these .
Formulae Used:-
Sum of zeroes is given by :
Product of zeroes is given by :
Answer:-
Given quadratic polynomial to us is ax² + bx + c .
Also given that its roots are in ratio m : n .
Let us take the given ratio be mk : nk .
Now ,
Sum of zeroes = -b/a . ...............(i)
Product of zeroes = c/a . ............(ii)
Let us take the roots be and .
_________________________________________
Also ,
•
Given:-
A quadratic polynomial is given to us.
The polynomial is ax² +bx + c .
Ratio of its zeroes is m:n .
To Find:-
The option b/w these
b²mn = ( m² + n² ) ac.
( m + n )²ac = b²mn.
b²( m² + n² ) = mnac.
None of these .
Formulae Used:-
Sum of zeroes is given by :
\large\purple{\underline{\boxed{\pink{\bf{\dag Sum\:of\:zeroes=\dfrac{-(Coefficient\:of\:x)}{Co-efficient\:of\:x^2}}}}}}
†Sumofzeroes=
Co−efficientofx
2
−(Coefficientofx)
Product of zeroes is given by :
\large\purple{\underline{\boxed{\pink{\bf{\dag Product\:of\:zeroes=\dfrac{Constant\:term}{(Coefficient\:of\:x^2)}}}}}}
†Productofzeroes=
(Coefficientofx
2
)
Constantterm
Answer:-
Given quadratic polynomial to us is ax² + bx + c .
Also given that its roots are in ratio m : n .
Let us take the given ratio be mk : nk .
Now ,
Sum of zeroes = -b/a . ...............(i)
Product of zeroes = c/a . ............(ii)
Let us take the roots be \alphaα and \betaβ .
\tt{:\implies \alpha + \beta=\dfrac{-b}{a}.}:⟹α+β=
a
−b
.
\tt{:\implies mk + nk = \dfrac{-b}{a}.}:⟹mk+nk=
a
−b
.
\tt{:\implies k ( m + n ) =\dfrac{-b}{a}.}:⟹k(m+n)=
a
−b
.
\tt{:\implies [k(m+n)]^2=\bigg(\dfrac{-b}{a}\bigg).}:⟹[k(m+n)]
2
=(
a
−b
).
\green{\tt{\longmapsto k^2(m+n)^2=\dfrac{b^2}{a^2}..............(iii)}}⟼k
2
(m+n)
2
=
a
2
b
2
..............(iii)
_________________________________________
Also ,
\tt{:\implies \alpha\beta=\dfrac{c}{a}.}:⟹αβ=
a
c
.
\tt{:\implies mk\times nk =\dfrac{c}{a}.}:⟹mk×nk=
a
c
.
\green{\tt{\longmapsto k^2mn=\dfrac{c}{a}.............(iv)}}⟼k
2
mn=
a
c
.............(iv)
\underline{\pink{\tt{\leadsto Divide\:equ^n\:(iii)\:by\:equ^n\:(iv).}}}
⇝Divideequ
n
(iii)byequ
n
(iv).
\tt{:\implies \dfrac{\cancel{k^2}mn}{\cancel{k^2}(m+n)^2}=\dfrac{c}{\cancel{a}}\times\dfrac{\cancel{a^2}}{b^2}.}:⟹
k
2
(m+n)
2
k
2
mn
=
a
c
× b 2a 2
\tt{:\implies \dfrac{mn}{(m+n)^2}=\dfrac{ac}{b^2}.}:⟹
(m+n)
2
mn
= b 2ac
.
\underline{\boxed{\blue{\tt{\dag b^2mn=(m+n)^2ac}}}}
†b 2
mn=(m+n)
2 ac
•\underline\red{\pink{\tt{\leadsto Hence\:the\:correct\:option\:is\:(B)\:[b^2mn=(m+n)^2ac].}}}
⇝Hencethecorrectoptionis(B)[b
2
mn=(m+n)
2 ac].