Math, asked by ramesh9566, 6 months ago

*Tell the answer to this question*
*No Cheating*
*The correct answer with correct explanation will be marked the brainliest*

Attachments:

Answers

Answered by nandanaMK
1

[theta \:  \: taken \:  \: as \:  \alpha ]

 \sec( \alpha )  =  \cosec( \alpha )

 \frac{1}{ \cos( \alpha ) }  =  \frac{1}{ \sin( \alpha ) }

 \cos( \alpha )  =  \sin( \alpha )

We know that ;

 \cos(45)  =  \frac{1}{ \sqrt{2} }  \\  \sin(45)  =  \frac{1}{ \sqrt{2} }

 \tt{So ,  \alpha  = 45 \: \:  \:  satisfies  \: \:  \: the \:  \:  \: equation}

Converting 45° to radians ;

To convert degree to radians multiply by pi/180

45 \times  \frac{\pi}{180}  \\  \\ canceling \:  \: by \:  \: 5 \\  \\  \frac{9\pi}{36}  \\  \\ canceling \:  \: by \:  \: 3 \\  \\  \frac{3\pi}{12}  \\   \\ canceling \:  \: again \:  \: by \:  \: 3 \\  \\ \frac{\pi}{4}

 \boxed{  \large{\bf{ \alpha  =  \frac{\pi}{4} } \: radians}}

 \\  \\  \\  \\  \red{ \bf{Hope \:   \: this \:   \: helps  \: \:  you \: !}}

Kindly Report , if not satisfied!! :)

Answered by arunaaruna0408
1

Answer:

[thetatakenasα]

\sec( \alpha ) = \cosec( \alpha )sec(α)=cosec(α)

\frac{1}{ \cos( \alpha ) } = \frac{1}{ \sin( \alpha ) }

cos(α)

1

=

sin(α)

1

\cos( \alpha ) = \sin( \alpha )cos(α)=sin(α)

We know that ;

\begin{gathered}\cos(45) = \frac{1}{ \sqrt{2} } \\ \sin(45) = \frac{1}{ \sqrt{2} }\end{gathered}

cos(45)=

2

1

sin(45)=

2

1

\tt{So , \alpha = 45 \: \: \: satisfies \: \: \: the \: \: \: equation}So,α=45satisfiestheequation

Converting 45° to radians ;

To convert degree to radians multiply by pi/180

\begin{gathered}45 \times \frac{\pi}{180} \\ \\ canceling \: \: by \: \: 5 \\ \\ \frac{9\pi}{36} \\ \\ canceling \: \: by \: \: 3 \\ \\ \frac{3\pi}{12} \\ \\ canceling \: \: again \: \: by \: \: 3 \\ \\ \frac{\pi}{4}\end{gathered}

45×

180

π

cancelingby5

36

cancelingby3

12

cancelingagainby3

4

π

Similar questions