Math, asked by sivasai187p57i9t, 1 year ago

tell the answer with proof

Attachments:

Answers

Answered by Yuichiro13
1
___________________________________

( 9 )
 \sqrt{ \tan(x)  + \:  \: \sqrt{ \tan(x)  + \sqrt{ \tan(x) + ... +  \infty  } }  }  = 3
 = >  {3}^{2}  -  \tan(x)  = 3
 =  >  \tan(x)  =  {3}^{2}  - 3 \\  =  >  \tan(x)  = 6 \\  =  >  { \tan(x) }^{2}  = 36 \\  =  > 1 +  { \tan(x) }^{2}  = 37 \\  =  >   { \sec(x) }^{2}  = 37 \\  =  >  \sec(x)  =  \sqrt{37}
___________________________________

( 10 )
✓✓ Assume the ratio as [ k : 1 ]
∆ By Section Formula ->
 -  >  \frac{10k}{k + 1}  = 7 \\  =  > 3k = 7 \\  =  > k =  \frac{7}{3}
∆ Verifying for y- coordinate :
  -  > \frac{ - k + 9}{k + 1}  = 2 \\  =  > 3k = 7 \\  =  > k =  \frac{7}{3}
∆ Hence, k : 1 = ( 7 / 3 ) : 1
=> The Desired Ratio = 7 : 3
____________________________________

Hence, the correct options are : ( b ) and ( 7 : 3 ) respectively
Similar questions