Math, asked by aarchi82, 1 year ago

tell this please I will mark you as brainlist

Attachments:

Anonymous: Question is incomplete
aarchi82: find the ratio of the line segement in to which the cone altitude is divided by a cone
GokulAchu: is it clear
aarchi82: yses

Answers

Answered by GokulAchu
1

Answer:

Step-by-step explanation:

Attachments:
Answered by viny6
0

hey mate

here is your answer

Let R is the radius, H is the height and L is the slant height of the original cone and

let r is the radius, h is the height and l is the slant height of the smaller cone respectively.

Now in ΔOAB and ΔOCD,

∠OAB = ∠OCD {each 90}

∠AOB = ∠COD {common}

So, by AA similarity,

ΔOAB ≅ ΔOCD

=> OB/OD = AB/CD = OA/OC

=> l/L = r/R = h/H

Now, curved surface area of the smaller cone = curved surface area of the cone - curved surface area of the frustum

=> curved surface area of the smaller cone = (1 - 8/9) * curved surface area of the cone

=> curved surface area of the smaller cone = (1/9) * curved surface area of the cone

=> curved surface area of the smaller cone/curved surface area of the cone = 1/9

=> πrl/πRL = 1/9

=> rl/RL = 1/9

=> (r/R)*(l/L) = 1/9

=> (h/H)*(h/H) = 1/9 {using equation 1}

=> (h/H)2 = 1/9

=> (h/H) = 1/3

=> h = H/3

Now, OA/AC = h/(h - h)

=> OA/AC = (H/3)/(H - H/3)

=> OA/AC = (H/3)/(2H/3)

=> OA/AC = 1/2

=> OA : AC = 1 : 2

So, the cones altitude is divided in the ratio 1 : 2

Attachments:
Similar questions