Math, asked by gragini595, 6 hours ago

Ten men, working for 6 days of 10 hours finish 5/21 of a piece of work. How many men working at the same rate and for the number of hours each day, will be required to complete the remaining work in 8 days​

Answers

Answered by Starrex
10

\bigstar\purple{\boxed{\large\bf{\leadsto 24\:men}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

\large\sf\underline{Given: }

  • ➠ 10 men, working for 6 days of 10 hours finish \dfrac{5}{21} of a piece of work
  • ➠ 600 hrs to complete \dfrac{5}{21} of work.

\large\sf\underline{To\:find: }

  • ➠The number of men working at the same rate and for the number of hours each day to complete the remaining work in 8 days.

\large\sf\underline{ Some\: abbrivations: }

  • ➠ M = number of men
  • ➠ D = number of days
  • ➠ H = number of hours worked per day
  • ➠ N = work done

Lets first find the number of working hours required to complete \dfrac{5}{21} of work.

ㅤㅤㅤㅤㅤ

Let the total number of hours required to complete the work be x then :

ㅤㅤㅤㅤㅤ\sf{\longrightarrow (x) =\dfrac{5}{21}\div 600}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow (x)=600\times\dfrac{21}{5}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow (x)=\cancel{\dfrac{12600}{5}}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow (x)=2520\:hours}

So the remaining work \sf{(x)-\dfrac{5}{21}} is :

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{16}{21}x}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \dfrac{16}{22}\times 2520}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow \cancel{\dfrac{40320}{21}}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow 1920}

1920 hrs required to complete remaining \dfrac{16}{21} of work

ㅤㅤㅤㅤㅤ

Equation to find number of men required :

ㅤㅤㅤㅤㅤ\underline{\boxed{\bf{MDH=N }}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow MDH=1920}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow M\times 8\times 10=1920}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow M = \cancel{\dfrac{1920}{80}}}

ㅤㅤㅤㅤㅤ\sf{\longrightarrow M=24}

\large\sf\orange{\underline{\dag Hence,\:24 \:men \: are \: required. }}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

Similar questions