Chemistry, asked by himanshubisht6350, 1 month ago

Test is carried out for testing significance in absolute error

Answers

Answered by angeljayasing200840
1

Answer:

Once sample data has been gathered through an observational study or experiment, statistical inference allows analysts to assess evidence in favor or some claim about the population from which the sample has been drawn. The methods of inference used to support or reject claims based on sample data are known as tests of significance.

Every test of significance begins with a null hypothesis H0. H0 represents a theory that has been put forward, either because it is believed to be true or because it is to be used as a basis for argument, but has not been proved. For example, in a clinical trial of a new drug, the null hypothesis might be that the new drug is no better, on average, than the current drug. We would write H0: there is no difference between the two drugs on average.

The alternative hypothesis, Ha, is a statement of what a statistical hypothesis test is set up to establish. For example, in a clinical trial of a new drug, the alternative hypothesis might be that the new drug has a different effect, on average, compared to that of the current drug. We would write Ha: the two drugs have different effects, on average. The alternative hypothesis might also be that the new drug is better, on average, than the current drug. In this case we would write Ha: the new drug is better than the current drug, on average.

The final conclusion once the test has been carried out is always given in terms of the null hypothesis. We either "reject H0 in favor of Ha" or "do not reject H0"; we never conclude "reject Ha", or even "accept Ha".

If we conclude "do not reject H0", this does not necessarily mean that the null hypothesis is true, it only suggests that there is not sufficient evidence against H0 in favor of Ha; rejecting the null hypothesis then, suggests that the alternative hypothesis may be true.

(Definitions taken from Valerie J. Easton and John H. McColl's Statistics Glossary v1.1)

Hypotheses are always stated in terms of population parameter, such as the mean . An alternative hypothesis may be one-sided or two-sided. A one-sided hypothesis claims that a parameter is either larger or smaller than the value given by the null hypothesis. A two-sided hypothesis claims that a parameter is simply not equal to the value given by the null hypothesis -- the direction does not matter.

Hypotheses for a one-sided test for a population mean take the following form:

H0: = k

Ha: > k

or

H0: = k

Ha: < k.

Hypotheses for a two-sided test for a population mean take the following form:

H0: = k

Ha: k.

A confidence interval gives an estimated range of values which is likely to include an unknown population parameter, the estimated range being calculated from a given set of sample data. (Definition taken from Valerie J. Easton and John H. McColl's

Explanation:

hope it helps you....

Similar questions