Math, asked by SparklingThunder, 15 days ago


1.3 + 3.5 + 5.7 + ... + (2n - 1)(2n + 1) =  \frac{n(4 {n}^{2} + 6n - 1) }{3} . \: Prove \: by \: Principle \:  of  \: Mathematical  \: Induction .
# Brainly Stars
# Moderators

Answers

Answered by mathdude500
20

\large\underline{\sf{Solution-}}

Given to Prove

\rm :\longmapsto\:1.3 + 3.5 + 5.7 + ... + (2n - 1)(2n + 1) = \frac{n(4 {n}^{2} + 6n - 1) }{3}

Let assume that,

\rm P(n): \:1.3 + 3.5 + 5.7 + ... + (2n - 1)(2n + 1) = \dfrac{n(4 {n}^{2} + 6n - 1) }{3}

Step :- 1 For n = 1

\rm P(1): \:1.3 = \dfrac{1(4 {(1)}^{2} + 6 - 1) }{3}

\rm P(1): \:3 = \dfrac{(4 + 6 - 1) }{3}

\rm P(1): \:3 = \dfrac{(10- 1) }{3}

\rm P(1): \:3 = \dfrac{9 }{3}

\rm P(1): \:3 = 3

\bf\implies \:P(n) \: is \: true \: for \: n = 1

Step :- 2 Let assume that P(n) is true for n = k, where k is natural number.

\rm P(n): \:1.3 + 3.5 + 5.7 + ... + (2k - 1)(2k + 1) = \dfrac{k(4 {k}^{2} + 6k - 1) }{3}

Step :- 3 We have to prove that P(n) is true for n = k + 1

\rm P(k + 1): \:1.3 + 3.5 + 5.7 + ... + (2k +  1)(2k + 3) = \dfrac{(k + 1)(4 {(k + 1)}^{2} + 6(k + 1) - 1) }{3}

Consider, LHS

\rm P(k + 1): \:1.3 + 3.5 + 5.7 + ... + (2k +  1)(2k + 3)

On substituting the value from Step 2, we get

\rm \:  =  \:  \: \dfrac{k(4 {k}^{2} + 6k - 1) }{3} + (2k + 1)(2k + 3)

\rm \:  =  \:  \: \dfrac{k(4 {k}^{2} + 6k - 1)  + 3 (2k + 1)(2k + 3)}{3}

\rm \:  =  \:  \: \dfrac{4 {k}^{3} + 6 {k}^{2} -  k + 3( {4k}^{2}  + 6k + 2k + 3)}{3}

\rm \:  =  \:  \: \dfrac{4 {k}^{3} + 6 {k}^{2} -  k + 3( {4k}^{2}  + 8k + 3)}{3}

\rm \:  =  \:  \: \dfrac{4 {k}^{3} + 6 {k}^{2} -  k + {12k}^{2}  + 24k + 9}{3}

\rm \:  =  \:  \: \dfrac{4 {k}^{3} +18{k}^{2}   + 23k  + 9}{3}

can be rewritten as

\rm \:  =  \:  \: \dfrac{ {4k}^{3} +  {14k}^{2}   +  {4k}^{2} + 9k +  14k + 9}{3}

\rm \:  =  \:  \: \dfrac{ {4k}^{3} +  {14k}^{2}  + 9k  +  {4k}^{2}  +  14k + 9}{3}

\rm \:  =  \:  \: \dfrac{k( {4k}^{2} + 14k + 9) + 1( {4k}^{2}   + 14k + 9)}{3}

\rm \:  =  \:  \: \dfrac{( {4k}^{2} + 14k + 9) (k+ 1)}{3}

can be rewritten as

\rm \:  =  \:  \: \dfrac{( {4k}^{2} + 8k  + 6k+ 10 - 1) (k+ 1)}{3}

\rm \:  =  \:  \: \dfrac{( {4k}^{2} + 8k  + 6k+ 6 + 4 - 1) (k+ 1)}{3}

\rm \:  =  \:  \: \dfrac{( {4k}^{2} + 8k  + 4+ 6k + 6 - 1) (k+ 1)}{3}

\rm \:  =  \:  \: \dfrac{( 4({k}^{2} + 2k  + 1)+ 6(k + 1) - 1) (k+ 1)}{3}

\bf\implies \:P(n) \: is \: true \: for \: n = k + 1

Hence,

By the Process of Principal of Mathematical Induction,

\rm :\longmapsto\:1.3 + 3.5 + 5.7 + ... + (2n - 1)(2n + 1) = \frac{n(4 {n}^{2} + 6n - 1) }{3}

Answered by Anonymous
5

Answer:

Your answer is in the attachment.

Attachments:
Similar questions