ɪғ ᴛʜᴇ ᴇǫᴜᴀᴛɪᴏɴ
ʜᴀs ᴀ ᴇǫᴜᴀʟ ʀᴏᴏᴛs ᴘʀᴇ ᴛʜᴀᴛ
ᑎO Տᑭᗩᗰ ᑭᒪᘔ___❣️
Answers
SOLUTION :
Given : (1 + m²)x² + 2 mcx + c² - a² = 0 has equal roots
On comparing the given equation with, ax² + bx + c = 0
Here, a = (1 + m²) , b = 2mc , c = c² - a²
Discriminant , D = b² - 4ac
D = 0 (has equal roots)
(2 mc)² - 4(1 + m²)(c² - a²) = 0
4m²c² - 4(c² - a² + m²c² - m²a²) = 0
4m²c² - 4c² + 4a² - 4m²c² + 4m²a² = 0
4m²a² - 4c² + 4a² = 0
4(m²a² - c² + a² ) = 0
m²a² - c² + a² = 0
a² + m²a² - c² = 0
a²(1 + m²) - c² = 0
c² = a²(1 + m²)
HOPE THIS ANSWER WILL HELP YOU...
mark me as brainliest
Answer:
Given- (1+m)x² +mcx + (c²-a²)= 0
To prove- c² = a² (1+m²)
Solution- (1 + m²) x²+2 mcx + (c²-a²)=0
we know that the condition for equal root
Determinant = 0
→ Determinant = b² - 4ac=0
Here a = 1 + m² , b= 2mc , c= c²-a²
since (2mc)² - 4 (1+ m²) ( c²-a²) = 0
→ 4c²m² -4c² - 4c² m² + 4a²+ 4a²m² = 0
→ -4c²= -4a²-4a²m²
→ 4c²= 4a²+4a²m²
→ 4c²= 4a²(1+ m²)
→ c²=a²(1+ m²)
hence proved, c²=a²(1+ m²)