Math, asked by SHREYANKSARWAJNA, 1 year ago


2(x {}^{2}  + y {}^{2} ) = (x + y) {}^{2} then \:  \:x = y \: prove


SHREYANKSARWAJNA: 2 (a²+b²) = (a+b)²

2a² + 2b² = a² + 2ab + b² ---------------------------- as (a + b)² = a² + 2ab + b²

2a² - a² + 2b² - b² – 2ab = 0

a² + b² – 2ab = 0
------------------------- as (a – b)² = a² – 2ab + b²

(a – b)² = 0

a – b = 0

a = b

Answers

Answered by Anonymous
1
Heya!!!

2x² + 2y² = x² + y² + 2xy

2 = 2xy

xy = 1..... equation 1

A.M ≥ G.M

x + y = 2 .... equation 2


x + 1 / x = 2

x² -2x + 1 = 0

x² - 1x - 1x + 1 = 0

x ( x - 1 ) - 1 ( x - 1 ) = 0

x = 1

For x = 1 y = 1

Therefore x = y. hence proved.


SHREYANKSARWAJNA: 2 (a²+b²) = (a+b)²

2a² + 2b² = a² + 2ab + b² ---------------------------- as (a + b)² = a² + 2ab + b²

2a² - a² + 2b² - b² – 2ab = 0

a² + b² – 2ab = 0
------------------------- as (a – b)² = a² – 2ab + b²

(a – b)² = 0

a – b = 0

a = b
Similar questions