Math, asked by ArnavkumarMandal, 1 year ago


(3 \sqrt{2}  \div  \sqrt{6}   -  \sqrt{3} ) + (2 \sqrt{3}  \div  \sqrt{6}  + 2) - (4 \sqrt{3}  \div  \sqrt{6}  -  \sqrt{2} )


Anonymous: ___k off
ArnavkumarMandal: same to you

Answers

Answered by CEOEkanshNimbalkar
1

Answer : 1.31784

Step by step explanation :

(3 \sqrt{2}  \div  \sqrt{6}  - 3) + (2 \sqrt{3}  \div 6 + 2) - (4 \sqrt{3} \div 6 - 2)

Write the division as a fraction

 =  > ( \frac{3 \sqrt{2} }{ \sqrt{6} }  - 3) + (  \frac{2 \sqrt{3} }{ \sqrt{6} }  + 2) - ( \frac{4 \sqrt{3} }{ \sqrt{6} }  - 2)

Simplify the expressions

 =  > ( \frac{3}{ \sqrt{3} }  - 3) + ( \frac{2}{ \sqrt{2} }  + 2) - ( \frac{4}{ \sqrt{2} }  - 2)

Remove unnecessary parenthesis.

 =  >  \frac{3}{ \sqrt{3} }  - 3 + ( \frac{2}{ \sqrt{2} }  + 2) - ( \frac{4}{ \sqrt{2} }  - 2)

When there is a "+" in front of the parenthesis the expression remains the same.

 =  >  \frac{3}{ \sqrt{3} }  - 3 +  \frac{2}{ \sqrt{2} }  + 2  - ( \frac{4}{ \sqrt{2} }  - 2)

Rationalize the denominator

 =  >  \frac{3}{ \sqrt{3} }  - 3 +  \frac{2}{ \sqrt{2} }  + 2 - (2 \sqrt{2}  - 2)

Rationalize the denominators

 =  >  \sqrt{3}  - 3 +  \sqrt{2}  + 2 - (2 \sqrt{2}  - 2)

When there is a "-" in front of the parenthesis, change the sign of each term in parenthesis.

 =  >  \sqrt{3}  - 3 +  \sqrt{2}  + 2 - 2 \sqrt{2}  + 2

Calculate the sum or difference.

 =  >   \sqrt{3}  + 1 +  \sqrt{2}  - 2 \sqrt{2}

Collect the like terms.

 =  >   \sqrt{3 }  + 1 -  \sqrt{2}

 =  > 1.31784

Similar questions