Math, asked by triggeredinsaan70, 1 year ago



3 \sqrt{5 {x }^{2} }  + 25x - 10 \sqrt{5 = 0}

ans by factorization method ​

Answers

Answered by dna63
6

\textbf{\underline{\red{\large{Step by step Explanation:-}}}}

\textit{\underline{Given,,}}

\mathtt{a=3\sqrt{5},,b=25,,c=10\sqrt{5}}

\mathcal{\underline{Hence,,}}

\mathtt{x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}}

\mathtt{\implies{x=\frac{-25\pm\sqrt{25^{2}-4\times{3\sqrt{5}}\times{-10\sqrt{5}}}}{2\times{3\sqrt{5}}}}}

\mathtt{\implies{x=\frac{-25\pm\sqrt{625-(4)(3)(5)(-10)}}{6\sqrt{5}}}}

\mathtt{\implies{x=\frac{-25\pm\sqrt{625+600}}{6\sqrt{5}}}}

\mathtt{\implies{x=\frac{-25\pm\sqrt{1225}}{6\sqrt{5}}}}

\mathtt{\implies{x=\frac{-25\pm{35}}{6\sqrt{5}}}}

\mathtt{x_{1}=\frac{-25+35}{6\sqrt{5}}}

\mathtt{\implies{x_{1}=\frac{10}{6\sqrt{5}}}}

\mathtt{\implies{x_{1}=\frac{5}{3\sqrt{5}}}}

\mathtt{\implies{x_{1}=\frac{\sqrt{5}}{3}}}

\mathtt{x_{2}=\frac{-25-35}{6\sqrt{5}}}

\mathtt{\implies{x_{2}=\frac{-60}{6\sqrt{5}}}}

\mathtt{\implies{x_{2}=\frac{-10}{\sqrt{5}}}}

\mathtt{\implies{x_{2}=-2\sqrt{5}}}

\mathit{\underline{Hence,,}}

\mathtt{x_{1}=\frac{\sqrt{5}}{3}}

\mathtt{x_{2}=-2\sqrt{5}}

\textbf{\pink{\large{Hope it helps you.. thanks}}}

Answered by abimanyupradhan1
1

Step-by-step explanation:

please make me as braniest

Attachments:
Similar questions