Science, asked by thapaavinitika6765, 8 months ago

3\tan ^3\left(A\right)-\tan \left(A\right)=0,\:0\le \:A\le \:360^{\circ \:}

solve it !!!

Answers

Answered by mangalasingh00978
1

Answer:

1

+

cot

2

θ

=

csc

2

θ

is found by rewriting the left side of the equation in terms of sine and cosine.

Prove:

1

+

cot

2

θ

=

csc

2

θ

1

+

cot

2

θ

=

(

1

+

cos

2

θ

sin

2

θ

)

Rewrite the left side

.

=

(

sin

2

θ

sin

2

θ

)

+

(

cos

2

θ

sin

2

θ

)

Write both terms with the common denominator

.

=

sin

2

θ

+

cos

2

θ

sin

2

θ

=

1

sin

2

θ

=

csc

2

θ

Similarly,

1

+

tan

2

θ

=

sec

2

θ

can be obtained by rewriting the left side of this identity in terms of sine and cosine. This gives

1

+

tan

2

θ

=

1

+

(

sin

θ

cos

θ

)

2

Rewrite left side

.

=

(

cos

θ

cos

θ

)

2

+

(

sin

θ

cos

θ

)

2

Write both terms with the common denominator

.

=

cos

2

θ

+

sin

2

θ

cos

2

θ

=

1

cos

2

θ

=

sec

2

θ

The next set of fundamental identities is the set of even-odd identities. The even-odd identities relate the value of a trigonometric function at a given angle to the value of the function at the opposite angle and determine whether the ident

Answered by MysteriousAryan
1

Answer:

3 tan³ θ = tan θ

Divide each side of the equation by tan θ

3 * tan³ θ tan θ

-------------- = ---------

tan θ tan θ

3 * tan³ θ tan θ

-------------- = -------------

tan θ tan θ

3 * tan³ θ

-------------- = 1

tan θ

3 * tan θ * tan² θ

----------------------- = 1

tan θ

3 * tan θ * tan² θ

----------------------- = 1

tan θ

3 tan² θ = 1

Divide each side of the equation by 3

3 * tan² θ 1

-------------- = -----

3 3

3 * tan² θ 1

-------------- = ------

3 3

1

(1) * tan² θ = -----

3

1

tan² θ = -----

3

Take the square root of each side of the equation

1

√(tan² θ) = √(-----)

3

1

tan θ = ± √(-----)

3

√1

tan θ = ± ------

√3

1

tan θ = ± ------

√3

To rationalize the denominator, multiply

the right side of the equation by √3/√3

1 √3

tan θ = ± ----- * ------

√3 √3

1 * √3

tan θ = ± -------------

√3 * √3

√3

tan θ = ± -------

3

θ = tan⁻¹[±√(3) / 3]

θ = tan⁻¹[±1.7320508075689 / 3]

θ = tan⁻¹[±0.5773502691896]

θ = 30°, 150°, 210°, 330°

(or θ = 1pi/6 radians, 5pi/6 radians,

7pi/6 radians, 11pi/6 radians)

θ =180k + 30

θ =180k - 30

Similar questions