Math, asked by bablutomar1980, 9 months ago


3x {}^{2}  + 8x - 10 \:  \: find \:  \: the \:  \: value \:  \: of \:

Answers

Answered by amankumaraman11
0

 \Large\bf3x {}^{2} + 8x - 10 \\

Here,

  • D = b² - 4ac

 \bf \to \: D =  {(8)}^{2}  - 4(3)(10) \\  \tt \to64 - 120 \\   \tt\to \blue{ - 56}

We know,

There exist three condition to determine the nature of roots of a Quadratic Equation :-

1)  \:    \text{When discriminant is less than zero, } \\  \:  \:  \:  \text{i.e. }   \: \rm{}{b}^{2} - 4ac < 0 , \text {then, roots are non-} \\ \:  \:  \:  \text {real numbers.}

 \rm{}2)   \: \text{When discriminant is equal to zero} \\    \:  \:  \: i.e.  \: \rm  {b}^{2} - 4ac = 0 \text{ ,  Then, The roots }\\  \:  \:  \: \text {are real \& similar.}

3) \: \text{When discriminant is more than zero, } \\  \:  \:  \:  \text{i.e. }   \: \rm{}{b}^{2} - 4ac > 0 , \text {then, roots are two} \\ \:  \:  \:  \text {distinct and real numbers.}

Thus,

  • 3x² + 8x - 10 has non-real roots as D < 0 i.e. D = -56

So,

  • It can't be factorised further.
Similar questions