Answers
Answered by
0
[
cos
2
α
cosαsinα
cosαsinα
sin
2
α
][
cos
2
β
cosβsinβ
cosβsinβ
sin
2
β
]
=[
cos
2
αcos
2
β+cosαsinαcosβsinβ
cosαsinαcos
2
β+sin
2
αcosβsinβ
cos
2
αcosβsinβ+cosαsinαsin
2
β
cosαsinαcosβsinβ+sin
2
αsin
2
β
]
=[
cosαcosβ(cosαcosβ+sinαsinβ)
sinαcosβ(cosαcosβ+sinαsinβ)
cosαsinβ(cosαcosβ+sinαsinβ)
sinαsinβ(cosαcosβ+sinαsinβ)
]
=[
cosαcosβcos(α−β)
sinαsinβcos(α−β)
cosαcosβcos(α−β)
sinαsinβcos(α−β)
]
Given α−β=(2n+1)
2
π
so, cos(α−β)=0
Thus,[
cosαcosβcos(α−β)
sinαsinβcos(α−β)
cosαcosβcos(α−β)
sinαsinβcos(α−β)
]=[
0
0
0
0
]=0
===========================
Answer By shreyas
Attachments:
Answered by
16
Solution−
Given that,
So,
Now, Consider
Hence, Proved
Similar questions