Math, asked by TrustedAnswerer19, 1 day ago


 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bf \: if \: \:  \:   \frac{ {sin}^{4}  \alpha }{a}  +  \frac{ {cos}^{ 4 } \alpha  }{b}  =  \frac{1}{a + b}  \:  \:  \\  \\  \bf \: then \: prove \: that :  \\  \\   \\  \bf \:  \frac{ {sin}^{4n}  \alpha  }{ {a}^{2n - 1} }  +  \frac{ {cos}^{4n}  \alpha }{ {b}^{2n - 1} }  =  \frac{1}{ {(a + b)}^{2n - 1} }

Answers

Answered by shreyas246
0

[

cos

2

α

cosαsinα

cosαsinα

sin

2

α

][

cos

2

β

cosβsinβ

cosβsinβ

sin

2

β

]

=[

cos

2

αcos

2

β+cosαsinαcosβsinβ

cosαsinαcos

2

β+sin

2

αcosβsinβ

cos

2

αcosβsinβ+cosαsinαsin

2

β

cosαsinαcosβsinβ+sin

2

αsin

2

β

]

=[

cosαcosβ(cosαcosβ+sinαsinβ)

sinαcosβ(cosαcosβ+sinαsinβ)

cosαsinβ(cosαcosβ+sinαsinβ)

sinαsinβ(cosαcosβ+sinαsinβ)

]

=[

cosαcosβcos(α−β)

sinαsinβcos(α−β)

cosαcosβcos(α−β)

sinαsinβcos(α−β)

]

Given α−β=(2n+1)

2

π

so, cos(α−β)=0

Thus,[

cosαcosβcos(α−β)

sinαsinβcos(α−β)

cosαcosβcos(α−β)

sinαsinβcos(α−β)

]=[

0

0

0

0

]=0

[cos2αcosαsinαcosαsinαsin2α][cos2βcosβsinβcosβsinβsin2β]</p><p></p><p></p><p>=[cos2αcos2β+cosαsinαcosβsinβcosαsinαcos2β+sin2αcosβsinβcos2αcosβsinβ+cosαsinαsin2βcosαsinαcosβsinβ+sin2αsin2β]</p><p></p><p></p><p>=[cosαcosβ(cosαcosβ+sinαsinβ)sinαcosβ(cosαcosβ+sinαsinβ)cosαsinβ(cosαcosβ+sinαsinβ)sinαsinβ(cosαcosβ+sinαsinβ)]</p><p></p><p></p><p>=[cosαcosβcos(α−β)sinαsinβcos(α−β)cosαcosβcos(α−β)sinαsinβcos(α−β)]</p><p></p><p></p><p>Given α−β=(2n+1)2π so, cos(α−β)=0</p><p></p><p></p><p>Thus,[cosαcosβcos(α−β)sinαsinβcos(α−β)cosαcosβcos(α−β)sinαsinβcos(α−β)]=[0000]=0</p><p></p><p>

===========================

Answer By shreyas

Attachments:
Answered by sajan6491
16

Solution−

Given that,

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{ {cos}^{ 4 } \alpha }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{ {( {cos}^{2} \alpha )}^{2} }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{ {(1 - {sin}^{2} \alpha )}^{2} }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{ {sin}^{4} \alpha }{a} + \dfrac{1 + {sin}^{4} \alpha - 2 {sin}^{2} \alpha }{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha + a + a{sin}^{4} \alpha - 2 a{sin}^{2} \alpha }{ab} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha + a{sin}^{4} \alpha - 2 a{sin}^{2} \alpha }{ab} + \dfrac{a}{ab} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha + a{sin}^{4} \alpha - 2 a{sin}^{2} \alpha }{ab} + \dfrac{1}{b} = \dfrac{1}{a + b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha + a{sin}^{4} \alpha - 2 a{sin}^{2} \alpha }{ab}= \dfrac{1}{a + b} - \dfrac{1}{b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha + a{sin}^{4} \alpha - 2 a{sin}^{2} \alpha }{ab}= \dfrac{b - a - b}{(a + b)b}

\rm :\longmapsto\: \dfrac{b {sin}^{4} \alpha + a{sin}^{4} \alpha - 2 a{sin}^{2} \alpha }{a}= \dfrac{- a}{(a + b)}

\rm :\longmapsto\:(a + b) {sin}^{4} \alpha - 2a {sin}^{2} \alpha = - \dfrac{ {a}^{2} }{a + b}

\rm :\longmapsto\:(a + b)^{2} {sin}^{4} \alpha - 2a(a + b) {sin}^{2} \alpha = - {a}^{2}

\rm :\longmapsto\:(a + b)^{2} {sin}^{4} \alpha - 2a(a + b) {sin}^{2} \alpha + {a}^{2} = 0

\bf\implies \: {\bigg[(a + b) {sin}^{2} \alpha - a \bigg]}^{2} = 0

\bf\implies \: {\bigg[(a + b) {sin}^{2} \alpha - a \bigg]} = 0

\bf\implies \: {sin}^{2} \alpha = \dfrac{a}{a + b}

So,

\bf\implies \: {cos}^{2} \alpha = 1 - {sin}^{2} \alpha = 1 - \dfrac{a}{a + b} = \dfrac{b}{a + b}

Now, Consider

\rm :\longmapsto\:\dfrac{ {sin}^{4n} \alpha }{ {a}^{2n - 1} } + \dfrac{ {cos}^{4n} \alpha }{ {b}^{2n - 1} }

\rm \: = \: \dfrac{ ({sin}^{2} \alpha) {}^{2n} }{ {a}^{2n - 1} } + \dfrac{ ({cos}^{2} \alpha)^{2n} }{ {b}^{2n - 1} }

\rm \: = \: \dfrac{ {a}^{2n} }{ {(a + b)}^{2n} {a}^{2n - 1} } + \dfrac{ {b}^{2n} }{ {(a + b)}^{2n} {b}^{2n - 1} }

\rm \: = \: \dfrac{ {a}^{} }{ {(a + b)}^{2n}} + \dfrac{ {b}^{} }{ {(a + b)}^{2n} }

\rm \: = \: \dfrac{ {a} + b}{ {(a + b)}^{2n}}

\rm \: = \: \dfrac{1}{ {(a + b)}^{2n - 1}}

Hence, Proved

Similar questions