Math, asked by mrhackerx1199, 7 hours ago


55x + 67y = 311
67x + 55y = 299
A --- (2,3)
B --- (3,2)
C --- (-2,3)
D --- (3,-2)

choose from above

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given pair of linear equation are

\rm :\longmapsto\:55x + 67x = 311 -  -  -  - (1)

and

\rm :\longmapsto\:67x + 55x = 299 -  -  -  - (2)

To solve such pair of simultaneous equations where diagonally elements are same, we have to first add two equations and then subtract two equations to reduce in to simplest form.

Adding equation (1) and (2), we get

\rm :\longmapsto\:122x + 122y = 610

\rm :\longmapsto\:122(x + y) = 610

\bf\implies \:x + y = 5 -  -  -  - (3)

On Subtracting equation (2) from (1), we get

\rm :\longmapsto\: - 12x + 12y = 12

\rm :\longmapsto\: 12(- x + y) = 12

\bf\implies \: - x + y = 1 -  -  -  - (4)

On adding equation (3) and (4), we get

\rm :\longmapsto\:2y = 6

\rm\implies \:\boxed{\tt{  \:  \: y = 3 \:  \: }} -  -  -  - (5)

On substituting the value of y in equation (3), we get

\rm :\longmapsto\:x + 3 = 5

\rm :\longmapsto\:x = 5 - 3

\rm\implies \:\boxed{\tt{  \:  \: x \:  =  \: 2 \:  \: }}

Hence,

Solution of pair of linear equations is

\begin{gathered}\begin{gathered}\bf\: \rm\implies  \: \begin{cases} &\bf{x = 2} \\  \\ &\bf{y = 3} \end{cases}\end{gathered}\end{gathered}

VERIFICATION

\rm :\longmapsto\:55x + 67x = 311

On substituting the values of x and y, we get

\rm :\longmapsto\:55 \times 2 + 67 \times 3 = 311

\rm :\longmapsto\:110 + 201 = 311

\rm :\longmapsto\:311 = 311

HENCE, VERIFIED

Similar questions