Math, asked by anannyadeb73, 1 year ago


6  \div x + 1 \:  + 5 \div 2x + 1 \:  = 3

Answers

Answered by LovelyG
1

Answer -

 \frac{6}{x + 1}  +  \frac{5}{2x + 1}  = 3 \\  \\  \frac{6(2x + 1) + 5(x + 1)}{(x + 1)(2x + 1)}  = 3 \\  \\  \frac{12x + 6 + 5x + 5}{2x {}^{2} + x + 2x + 1 }  = 3 \\  \\  \frac{17x + 11}{2x {}^{2}  + 3x + 1}  = 3 \\  \\  \bf on \: cross - multiplying :  \\  \\ 3(2x {}^{2}  + 3x + 1) = 17x + 11 \\  \\ 6x {}^{2}  + 9x + 3 = 17x + 11 \\  \\ 6x {}^{2}  + 9x - 17x + 3 - 11 = 0 \\  \\ 6x {}^{2}  - 8x - 8 = 0

\sf Now, \: we \: got \: quadratic \: equation:  \\  \\ 6x {}^{2}   - 8x - 8 = 0 \\  \\ 2(3x {}^{2}  - 4x - 4) = 0 \\  \\ 3x {}^{2}  - 4x - 4 = 0 \\  \\ 3x {}^{2}  - 6x + 2x - 4 = 0 \\  \\ 3x(x - 2) + 2(x - 2) = 0 \\  \\ (x - 2)(3x + 2) = 0 \\  \\  x - 2 = 0 \: | 3x + 2 = 0 \\  x = 2  \:  \:  \:  \:  \:  \:  \:  \:  \:  | x =  \frac{ - 2}{3}

 \bf Therefore.. \\  \\ \boxed{\bf x = 2 \: or \: x =  \frac{ - 2}{3}}

Similar questions