Answers
Correct question:-
If A+B+C=π then,Prove that: cos²A + cos²B + cos²C + 2 cosA . cosB . cosC = 1
Solution:-
Here, A + B + C = π, then
A + B = π - C
B + C = π - A
A + C = π - C
Now, Let’s consider:-
= 2 cosA . cosB . cosC
= cosA [2 cosB.cosC]
= cosA[cos(B+C)+ cos(B- C)]
= cosA [cos(180-A) + cos(B-C)]
= cosA [-cosA + cos(B-C)]
= -cos²A + cosA cos(B-C)
= -cos²A + {2cosA cos(B-C)}/2
= -cos²A + [cos(A - B + C) + cos(A + B - C)]/ 2
= -cos²A + [cos(A + C - B) + cos(A + B - C)]/ 2
= -cos²A + [cos(180 - B - B) + cos(180 - C - C)]/2
= -cos²A + [cos(180 - 2B) + cos(180 - 2C)]/2
= -cos²A – [cos2B + cos2C]/2
= ( -2cos²A – cos2B – cos2C ) / 2
= 1/2 [-2cos²A – cos2B – cos2C]
= 1/2 [ -2cos²A – 2cos²B + 1 – 2cos²C + 1 ]
=1/2 [ -2cos²A – 2cos²B – 2cos²C + 2 ]
= -(cos²A + cos²B + cos²C) + 1
or 2 cosA . cosB . cosC= – (cos²A + cos²B + cos²C) + 1
cos²A + cos²B + cos²C + 2 cosA . cosB . cosC = 1
Hence Proved!
Answer:
Solution,
cos(A+B) = cos C
L.HS =
=
=
=
=
=
=
=
=RHS
Hope it will help you a lot