Math, asked by smkclashers, 9 months ago


a =  \binom{1 \: \:  \:  3}{4 \:  \:  \: 5}  \\ b =  \binom{12 \:  \:  \: 9}{7 \:  \:  \ \:  6}  \\ find \:  {a}^{t}  +  {b}^{t}  \\ i \: want \: a \: written \: solution \: no \: adding \: of \: pictures. \: answers \: with \: pictures \: will \: be \: deleted.

Answers

Answered by Soumok
29

\binom{13 \:  \:  \: 11}{12 \:  \:  \: 11}

Step-by-step explanation:

First \: you \: should \: know \: the \: formula \\ of \: transpose \\ Lemme \: give \: you  \: an \: example.... \\ if \:  \:X=  \binom{a \:  \:  \: b}{c \:  \:  \: d}  \\ then \:  {X}^{t}  =  \binom{a \:  \:  \: c}{b \:  \:  \: d}  \\

Applying \: this \: formula \: in \\  \: your \: question... \\A=  \binom{1 \:  \:  \: 3}{4 \:  \:  \: 5}  \\ \: So, \:  {A}^{t}  =  \binom{1 \:  \:  \: 4}{3 \:  \:  \: 5}  \\ B =  \binom{12 \:  \:  \: 9}{7 \:  \:  \: 6}  \\  {B}^{t}  =  \binom{12 \:  \:  \: 7}{9 \:  \:  \: 6}  \\ Before \: adding \: the \: two \: matrix \:  \\ lemme \: add \: another \: formula.. \\ if \: X =  \binom{a \:  \: b}{c \:  \: d}  \\ and \: Y =  \binom{e \:  \: f}{g \:  \: h}  \\ then \: X+Y =  \binom{(a + e) \:  \:  \: (b + f)}{(c + g) \:  \:  \: (d + h)} \\ Applying \: this \: formula \\  {A}^{t}  +  {B}^{t}  =  \binom{(1 + 12) \:  \: (4 + 7)}{(3 + 9) \:  \: (5 + 6)} \\  =  >  \binom{13 \:  \:  \: 11}{12 \:  \:  \: 11}  \\ \bold Hence \: this \: is \: the \: Answer

...........................................................

Note :-

  • Plural of matrix is called matrices.
  • Each number or entity in a matrix is called as its element.
  • In a matrix, the horizontal lines are called rows, whereas the vertical lines are called columns.

...........................................................


mysticd: Use Capitals to denote sets .
mysticd: Sorry Matrix
mysticd: A , A^T
Similar questions